On the space-time localization of incipient earthquakes by diagmostics of disturbances in the ionospheric plasma using a space probe

1Shuvalov, VA, 1Gorev, NB, 1Kochubei, GS, 2Levkovych, OO
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Ukrainian State University of Science and Technologies, Dnipro, Ukraine
Space Sci. & Technol. 2024, 30 ;(6):05-05
Publication Language: English
Abstract: 
This paper reports the results of in-situ probe diagnostics of local disturbances in the ionospheric plasma. The results are presented as the space–time distributions of the charged particle temperatures and densities measured by the electric probes onboard the DEMETER (France) and the distributions of the electron and neutral particle temperatures and densities measured by the Langmuir probe and the two-channel pressure probe onboard the Sich-2 (Ukraine).

       By the example of interpreting the output signals of the electric probes onboard the DEMETER (France), the Sich-2 (Ukraine), and the CSES (China), it is found that maxima in the electron and neutral particle temperature and density distributions along the spacecraft orbit in the ionospheric plasma correspond to the location of the epicenters of earthquakes incipient on the ground track. An additional parameter that improves the epicenter localization accuracy is the electron energy gain rate in the ionospheric plasma. It is shown that the relaxation times of maxima in the electron and neutral particle temperatures in the ionospheric plasma determine the time to the first shock of an earthquake incipient on the ground track.

Keywords: earthquake, electric probe, ground track, ionospheric plasma, temperature relaxation time
References: 
1. Akhoondzadeh M., Parrot M., Saradjian M.R. (2010). Electron and ion density variation before strong earthquakes (M>6.0) using DEMETER and GPS data. Natural Hazards and Earth System Sciences 10, 1, 7–18. .
doi: 10.5194/nhess-10-7-2010.
.    2. Bettinger R. T., Chen A. A. (1968). An end effect associated with cylindrical probe moving at satellite velocities. Journal Geophysical Research, 73, 7, 2513–2528.
3. Davis B. (2012). Studying the ionosphere with Langmuir probe with an application to seismic monitoring. Final report. ASEN 5168: Remote Sensing. 11 p.
4. Golant V.E., Zhilinsky A.P., Sakharov I.E. (1977). Fundamentals of Plasma Physics. Atomizdat, Moscow. 384. [in Russian].
5. Gurevich A.V., Shvartzburg A.B. (1973). Nonlinear Theory of Radio Wave Propagation in the Ionosphere. Nauka, Moscow. 272. [in Russian].
6. International Reference Ionosphere–2012 (IRI-2012). 
7. Laframboise L.G., Sonmor L.J. (1993). Current collection by probes and electrodes in space magnetoplasmas: A review. Journal of Geophysical Research, 98, A1, 337–357.
8. Lebreton J.P., Stverak S., Travnicek P., Maksimovic M., Klinge D., Merikallio S., Lagoutte D., Poirier B., Blelly P.-L., Kozacek Z., Salaquardaet M. (2006). Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results. Planetary and Space Science, 54, №5, 472–486.
doi.org/10.1016/j.pss.2005.10.017
9. Liu D., Zeren Z., Shen X., Zhao S., Yan R., Wang X., Liu C., Guan Y., Zhu X., Miao Y., Yang D., Huang H., Guo F. (2021). Typical ionospheric disturbances revealed by the plasma analyzer package onboard the China Seismo-Electromagnetic satellite. Adv. in Space Research, 68, 3796–3805.
10. Mitchner M., Kruger C.H. (1973). Partially Ionized Gases. John Willey, 1973. 518.
11. Moskalenko A. M. (1979). Theory of a cylindrical probe. Cosmic Research, 17, 1, 42–49.
12. Picone J.M., Hedin A.E., Drob D.P., Aikan A.C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistic comparisons and scientific issues. Journal of Geophysical Research. 107, A12, 1468–1484.
doi.org/10.1029/2002JA009430.
     13. Newton G., Silverman P., Pelz D. Interaction between neutral gas and orificed pressure gauge mounted in a spinning satellite. (1969). Rarefied Gas Dynamic. V. 2. Acad. Press, New-York. 1571–1573.
14. Pulinets S.A. (2009). Physical mechanism of vertical electric field generation over active tectonic faults. Advances in Space Research, 44, 6, 767–773.
doi.org/10.1016/j.asr.2009.04.038.
15. Pulinets S.A., Davidenko D. (2014). Ionospheric precursors of earthquake and Global Electric Circuit. Advances in Space Research. 53, 5, 709–723.
doi: 10.1016/j.asr.2013.12.035.
16. Pulinets S.A., Legen’ka A.D., Gaivoronskaya T.V., Depuev V.Kh. (2003). Main phemenological features of ionospheric al precursors of strong earthquakes. Journal Atmospheric and Solar-Terrestrial Physics. 65, 16-18, 1337–1347.
https://doi.org/10.1016/j.jastp.2003.07.011.
17. Rose D.J., Clark M.Jr. (1961). Plasmas and Controlled Fusion. John Willey and Sons, NewYork–London. 493.
18. Sarkar S., Choudhary S., Sonakia A., Vishwakarma A., Gwal A.K. (2012). Ionospheric anomalies associated with the Haiti earthquake of 12 January 2010 observed by DEMETER satellite. Nat Hazards Earth Syst Sci, 12, No. 3, 671–678.
doi.org/10.5194/nhess-12-671-2012
19. Shuvalov V.A., Priymak A.I., Reznichenko N.P., Tokmak N.A., Kochubei G.S. (2004). Contact diagnostics of the ionosphere and laboratory plasma. Kosm. Nauka Tehnol.,  10, 2/3, 3–15. [in Russian].
20. Shuvalov V.A., Korepanov V.E., Lukenyuk A.A., Tokmak N.A., Kochubey G.S. (2012). Modeling of probe measurements of plasma environment parameters onboard the spacecraft «Sich-2». Kosm. Nauka Tehnol., 18, 6, 5–13. [in Russian].
     21. Shuvalov V.A., Lukenjuk A.A., Pismennyi N.I., Kulagin S.N. (2013). Probe diagnostics of laboratory and ionospheric rarefied plasma flows. Kosm. Nauka Tehnol., 19, 1,  13 – 19. [in Russian].
22. Shuvalov V.A, Lazuchenkov D.N, Gorev N.B, Kochubei G.S. (2018). Identification of seismic activity sources on the subsatellite track by ionospheric plasma disturbances detected with the Sich-2 onboard probes. Advances in Space Research, 61, 1, 355–366.
23. Wang Y.D., Pi D.C., Zhang X.M., Shen X.H. (2015). Seismo-ionospheric precursory anomalies detection from DEMETER satellite data based on data mining. Natural Hazards, 76, 823–837.
doi: 10.1007/s11069-014-1519-3.