Modeled microgravity impact on the cytoskeleton organization in Arabidopsis Thaliana root cells

1Shevchenko, GV
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Space Sci. & Technol. 2024, 30 ;(6):06-06
Publication Language: Ukrainian
Abstract: 
Planning manned space missions requires long-term cultivation of various types of plants, and this necessitates the detection of microgravity's impact on root cells since the nutrition and orientation of plants depend upon the state of the root system. Analysis of how cytoskeleton proteins function in simulated microgravity is essential for understanding the mechanisms of rapid cell response to external stimuli, which is inherent in plants. The organization of the tubulin component of the cytoskeleton and the mechanisms of its regulation by associated proteins were studied under the conditions of horizontal clinorotation, which changes cell polarity, eliminates directional influence, and minimizes the gravity effect.
       Experiments have shown that slow clinorotation causes mechanical stress associated with a significant decrease in the gravitational load on the side cell walls. This affects the organization of the tubulin cytoskeleton - a complex system of polymeric proteins whose functions are to ensure the shape of the cell, cell signaling and growth. Namely, a partial deviation of cortical microtubules from the transverse orientation in the cell of the A.thaliana root elongation zone was revealed. The above may be the result of a decrease in the expression of the TUA6 gene, which encodes the structural subunit of microtubule polymers, and the CLASP gene, whose protein regulates the organization of the microtubule network. A decrease in gene expression leads to the alteration of both the polymerization of microtubules and their connection with the cytoplasmic membrane, which is visually manifested in partial disorientation of individual microtubules in epidermal and cortical cells. 
         Thus, the reduction of the gravitational load from clinorotation on the cell eliminates the need for a rigid network of the cortical cytoskeleton and affects its partial disorganization, which, in turn, leads to the discoordination of plant root growth. Investigation of the cytoskeleton influence on the growth characteristics of plants in microgravity essentially contributes to the development of plant growth technologies for long-term space flights.
Keywords: Arabidopsis, cortical microtubules, cytoskeleton, mechanical stress, modeled microgravity
References: 
1. Kordyum E. L., Shevchenko G. V. (2003). A role of cytoskeleton in gravisensitivity of a plant cell: experimental data and hypotheses. Cytology and genetics, 37, no 2, 56-68.
2. Shevchenko G. V. (2021). Comparative organization of tubulin microtubules in root cells of Zea mays (Poaceae) and Beta vulgaris (Chenopodiaceae s. str.  Amaranthaceae s. l.) under the influence of clinorotation. Ukr. Bot. J., 78, no 6, 426-433.
DOI.org/10.15407/ukrbotj78.06.426
3. Ambrose J. C., Shoji T., Kotzer A. M., Pighin J. A., Wasteneys G. O. (2007). The Arabidopsis CLASP gene encodes a microtubule- associated protein involved in cell expansion and division. Plant Cell., 19, 2763-2775.
4. Brouhard G. J., Rice L. M. (2018). Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell. Biol., 19, no 7, 451-463.
DOI: 10.1038/s41580-018-0009-y
5. Elliott A., Shaw S. L. (2018). Update: plant cortical microtubule arrays. Plant Physiol., 176, 94-105.
6. Ferranti F., DelBianco M., Pacelli C. (2021). Advantages and limitations of current microgravity platforms for space biology research. Appl. Sci., 11, № 1, 68.
DOI: 10.3390/app11010068
7. Hsiao A-S., Huang J-Y. (2023). Microtubule regulation in plants: from morphological development to stress adaptation.
Biomolecules, 13, 627.
DOI:10.3390
8. Kato S., Murakami M., Saika R., Soga K., Wakabayashi K., Hashimoto H., Yano S., Matsumoto S., Kasahara H., Kamada M., Shimazu N., Hashimoto T., Hoson T. (2022). Suppression of cortical microtubule reorientation and stimulation of cell elongation in Arabidopsis hypocotyls under microgravity conditions in space. Plants, 11, № 465, 1-12.
DOI: 10.3390/plants11030465
9. Kiss J. Z., Wolverton Ch., Wyatt S. E., Hasenstein K. H., van Loon J. W. A. (2019). Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci., 10, no 1577.
DOI: 10.3389/fpls.2019.01577
10. Krtkova J., Benakova M., Schwarzerova K. (2016). Multifunctional microtubule-associated proteins in plants. Front Plant Sci., 7, no 474.
DOI: 10.3389/fpls.2016.00474.
11. Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the
22DDCT method. Methods, 25, 402-408.
DOI:10.1006/meth.2001.1262
12. Manzano A. I., Сarnero-Diaz E., Herranz R., Medina F-J. (2022). Recent transcriptomic studies to elucidate the plant
adaptive response to spaceflight and to simulated space environments. Science, 25: 1046872022.104687.
DOI: 10.1016/j.isci
13. Pleskot R., Pejchar P., Staiger C. J., Potocký M. (2014). When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front Plant Sci., 5: 5.
DOI:10.3389/fpls.2014.00005
14. Shevchenko G., Kalinina Ya. М., Kordyum E. L. (2007). Interrelation between microtubules and microfilaments in the elongation zone of Arabidopsis root under clinorotation. Adv. Space Res., 39, 1171-1175.
15. Shevchenko G., Kalinina Ya. М., Kordyum E. L. (2008). Role of cytoskeleton in gravisensing of the root elongation zone in Arabidopsis thaliana plants. Cell. Biol. Int., 32, 560-562.
16. Shevchenko G., Krutovsky K. (2022). Mechanical stress effects on transcriptional regulation of genes encoding microtubule-and actin-associated proteins. Physiol. Mol. Biol. Plants, 28, no 1, 17-30.
DOI: 10.1007/s12298-021-01123-x
17. Struk S. and Dhonukshe P. (2014). MAPs: cellular navigators for microtubule array orientations in Arabidopsis. Plant Cell. Rep., 33, 1-21.
DOI: 10.1007/s00299-013-1486-2
18. Wang H., Li X., Krause L., Gorog M., Schuler O., Hauslage J., Hemmersbach R., Kircher S., Lasok H., Haser T., Rapp K., Schmidt J., Yu X., Pasternak T., Aubry-Hivet D., Tietz O., Dovzhenko A., Palme K., Ditengou F. A. (2015). 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Micrograv. Sci. Tech.
DOI: 10.1007/s12217-015-9478-1