NGC 3521 as the Milky Way analogue: Spectral energy distribution from UV to radio and weak photometric variability of the nuclear activity
1Pastoven, OS, 1Kompaniiets, OV, 1Vavilova, IB, 1Izviekova, IO 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Space Sci. & Technol. 2024, 30 ;(6):67-83 |
https://doi.org/10.15407/knit2024.06.067 |
Publication Language: English |
Abstract: We studied the multiwavelength properties of NGC 3521, the Milky Way galaxy-twin, from UV- to radio, exploring the data from GALEX for UV-, SDSS for optical, 2MASS, WISE, MIPS (Spitzer) and PACS, SPIRE (Herschel) for IR-, and NRAO VLA for radio ranges. To obtain the spectral energy distribution (SED), we exploited the CIGALE software and constructed SEDs without (model A) and with (model B) AGN module. The type of nuclear activity of isolated galaxy NGC 3521 is confirmed as the LINER.
We also present the results of the photometric data processing. Exploring the ZTF observations in 2018–2024, we found, for the first time, a weak photometric variability of the nuclear activity, where the correlation between g-r color indices and g-magnitude for long-term timescale shows a BWB trend (bluer-when-brighter) with a Pearson coefficient r(g–r)=0.56, which is a medium correlation. To detect the variability of NGC 3521 during the day (IDV), we provided observations using a Zeiss-600 telescope with an aperture size of 8″ at the Terskol observatory. The data obtained in the R-filter with an exposure of 90 sec for three hours on Feb 11, 2022, serve in favor of a trend towards an increase in brightness with the amplitude of variability of 0.04 ± 0.001 mag.
According to the results of the simulations, the best fit to the observed SED is provided by model А, which considers the contribution to the radiation from all galaxy components, assuming that the galaxy nucleus is inactive. Within this model, we derived the stellar mass Mstar= 2.13 x 1010MSun, the dust mass Mdust= 8.45 x 107MSun, and the star formation rate SFR = 1.76 MSun/year with χ2/d.o.f = 1.8. Also, based on the HIPASS radio data, we estimated the mass of neutral hydrogen to be MHI= 1.3 x 1010MSun, which is an order of magnitude greater than the mass of the stellar component.
|
Keywords: Galaxies – multiwavelength properties, photometric variability. Galaxies – Individual – NGC 3521, spectral energy distribution |
1.Allison, J. R., Sadler, E. M., Meekin, A. M. (2014). A search for H I absorption in nearby radio galaxies using HIPASS. Mon. Not. R. Astron. Soc., 440, Is. 1, 696-718.
https://doi.org/10.1093/mnras/stu289
DOI: 10.1093/mnras/stu289, arXiv: 1402.3530 [astro-ph.GA].
2.Baldwin, J. A., Phillips, M. M., Terlevich, R. (1981). Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac., 93, 5-19.
https://doi.org/10.1086/130766
3.Bonnarel, F. ; Fernique, P. ; Bienaymé, O et al. (2000). The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources Astronomy and Astrophysics Supplement, v.143, p.33-40.
https://doi.org/10.1051/aas:2000331
4.Boquien, M., Burgarella, D., Roehlly, Y., et al. (2019). CIGALE: a python Code Investigating GALaxy Emission. Astron. Astrophys., 622, A103.
https://doi.org/10.1051/0004-6361/201834156
DOI: 10.1051/0004-6361/201834156, arXiv: 1811.03094 [astro-ph.GA].
5. Brown, M. J. I., Armus, L., Calvin, D. E., et al. (2014). An Atlas of Galaxy Spectral Energy Distributions from the Ultraviolet to the Mid-infrared. Astrophys. J. Suppl. Ser., 212, Is. 2, 18.
https://doi.org/10.1088/0067-0049/212/2/18
DOI: 10.1088/0067-0049/212/2/18, arXiv: 1312.3029 [astro-ph.CO].
6.Bruzual, G., Charlot, S. (2003). Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc., 344, Is. 4, 1000-1028.
https://doi.org/10.1046/j.1365-8711.2003.06897.x
DOI: 10.1046/j.1365-8711.2003.06897.x, arXiv: astro-ph/0309134 [astro-ph].
7. Burbidge, E. M., Burbidge, G. R., et al. (1964). The Rotation and Mass of NGC 3521. Astrophys. J., 139, 1058.
https://doi.org/10.1086/147845
8. Calzetti, D., Armus, L., Bohlin, R. C., et al. (2000). The Dust Content and Opacity of Actively Star-forming Galaxies. Astrophys. J., 533, Is. 2, 682-695.
https://doi.org/10.1086/308692
DOI: 10.1086/308692, arXiv: astro-ph/9911459 [astro-ph].
9.Casertano, S., van Gorkom, J. H. (1991). Declining rotation curves - The end of a conspiracy? Astron. J., 101, 1231-1241.
https://doi.org/10.1086/115759
10.Chabrier, G. (2003). Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac., 115, Is. 809, 763-795.
https://doi.org/10.1086/376392
DOI: 10.1086/376392, arXiv: astro-ph/0304382 [astro-ph].
11. Ciesla, L., Elbaz, D., Fensch, J. (2017). The SFR-M∗ main sequence archetypal star-formation history and analytical models. Astron. Astrophys., 608, A41.
https://doi.org/10.1051/0004-6361/201731036
DOI: 10.1051/0004-6361/201731036, arXiv: 1706.08531 [astro-ph.GA].
12. Coccato, L., Fabricius, M., Saglia, R. P., et al. (2018). Spectroscopic decomposition of NGC 3521: unveiling the properties of the bulge and disc. Mon. Not. R. Astron. Soc., 477, Is. 2, 1958-1969.
https://doi.org/10.1093/mnras/sty705
13.Condon, J. J., Cotton, W. D., Broderick, J. J. (2002). Radio Sources and Star Formation in the Local Universe. Astrophys. J., 124, Is. 2, 675-689.
https://doi.org/10.1086/341650
14. Dale, D. A., Aniano, G., Engelbracht, C. W., et al. (2012). Herschel Far-infrared and Submillimeter Photometry for the KINGFISH Sample of nearby Galaxies. Astrophys. J., 745, Is. 1, 95.
https://doi.org/10.1088/0004-637X/745/1/95
DOI: 10.1088/0004-637X/745/1/95, arXiv: 1112.1093 [astro-ph.CO].
15. Das, M., Teuben, P. J., Vogel, S. N., et al. (2003). Central Mass Concentration and Bar Dissolution in Nearby Spiral Galaxies. Astrophys. J., 582, Is. 1, 190-195.
https://doi.org/10.1086/344480
16. Dettmar, R.-J., Skiff, B. A. (1993). Declining rotation curves in interacting galaxies. In: NASA Ames Research Center, Evolution of Galaxies and their Environment, 251-252.
17. Dobrycheva, D. V., Vavilova, I. B., Melnyk, O. V., Elyiv, A. A. (2018). Morphological type and color indices of the SDSS DR9 galaxies at 0.02 https://doi.org/10.3103/S0884591318060028
18. Draine, B. T., Dale, D. A., Bendo, G., et al. (2014). Andromeda's Dust. Astrophys. J., 780, Is. 2, 172.
DOI: 10.1088/0004-637X/780/2/172, arXiv: 1306.2304 [astro-ph.CO].
https://doi.org/10.1088/0004-637X/780/2/172
19. Elson, E. C. (2014). An H I study of NGC 3521 - a galaxy with a slow-rotating halo. Mon. Not. R. Astron. Soc., 437, Is. 4, 3736-3749.
https://doi.org/10.1093/mnras/stt2182
20. Fabricius, M. H., Coccato, L., Bender, R., et al. (2015). Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W. IAU Proc., 309, 81-84.
https://doi.org/10.1017/S1743921314009363
21. Fritz, J., Franceschini, A., Hatziminaoglou, E. (2006). Revisiting the infrared spectra of active galactic nuclei with a new torus emission model. Mon. Not. R. Astron. Soc., 366, Is. 3, 767-786.
https://doi.org/10.1111/j.1365-2966.2006.09866.x
22. Grasha, K., Chen, Q. H., Battisti, A. J., et al. (2022). Metallicity, Ionization Parameter, and Pressure Variations of H II Regions in the TYPHOON Spiral Galaxies: NGC 1566, NGC 2835, NGC 3521, NGC 5068, NGC 5236, and NGC 7793. Astrophys. J., 929, Is. 2, 118.
https://doi.org/10.3847/1538-4357/ac5ab2
23. Haslbauer, M., Banik, I., Kroupa, P., et al. (2024). The Magellanic Clouds are very rare in the IllustrisTNG simulations. Universe, 10(10), 385.
https://doi.org/10.3390/universe10100385
24. Heida, M., Jonker, P. G., Torres, M. A. P., et al. (2014). Near-infrared counterparts of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc., 442, Is. 2, 1054-1067.
https://doi.org/10.1093/mnras/stu928
25. Helou, G., Soifer, B. T., Rowan-Robinson, M. (1985). Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies. Astrophys. J., 298, L7-L11.
https://doi.org/10.1086/184556
26. Inoue, A. K. (2011). Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies. Mon. Not. R. Astron. Soc., 415, Is. 3, 2920-2931.
https://doi.org/10.1111/j.1365-2966.2011.18906.x
27. Karachentsev, I. D., Makarova, L. N., Anand, G. S., et al. (2022). Around the Spindle Galaxy: The Dark Halo Mass of NGC 3115. Astron. J., 163, Is. 5, 234.
https://doi.org/10.3847/1538-3881/ac5ab5
28. Karachentseva, V. E. (1973). The Catalogue of Isolated Galaxies. Astrof. Issledovanija Byu. Spec. Ast. Obs., 8, 3-49.
29. Kauffmann, G., Heckman, T. M., Tremonti, C., et al. (2003). The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc., 346, Is. 4, 1055-1077.
https://doi.org/10.1111/j.1365-2966.2003.07154.x
30. Kewley, L. J., Dopita, M. A., Sutherland, R. S., et al. (2001). Theoretical Modeling of Starburst Galaxies. Astrophys. J., 556, Is. 1, 121-140.
https://doi.org/10.1086/321545
31. Knapik, J., Soida, M., Dettmar, R.-J., et al. (2000). Detection of spiral magnetic fields in two flocculent galaxies. Astron. Astrophys., 362, 910-920.
DOI: 10.48550/arXiv.astro-ph/0009438.
32. Kompaniiets, O. V. (2023). Multiwavelength properties of the low-redshift isolated galaxies with active nuclei modelled with CIGALE. Space Sci. Technol., 29(5), 88-98.
https://doi.org/10.15407/knit2023.05.088
33. Konovalenko, A., Sodin, L., Zakharenko, V., et al. (2016). The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42, Is. 1, 11-48.
https://doi.org/10.1007/s10686-016-9498-x
34. Kourkchi, E., Tully, R. B. (2017). Galaxy Groups Within 3500 km/s. Astrophys. J., 843, Is. 1, 16.
https://doi.org/10.3847/1538-4357/aa76db
35. Leroy, A. K., Walter, F., Bigiel, F., et al. (2008). The Star Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars Effectively. Astrophys. J., 136, Is. 6, 2782-2845.
https://doi.org/10.1088/0004-6256/136/6/2782
DOI: 10.1088/0004-6256/136/6/2782, arXiv: 0810.2556 [astro-ph].
36. Liu, G., Koda, J., Calzetti, D., et al. (2011). The Super-linear Slope of the Spatially Resolved Star Formation Law in NGC 3521 and NGC 5194 (M51a). Astrophys. J., 735, Is. 1, 63.
https://doi.org/10.1088/0004-637X/735/1/63
37. López, K. M., Jonker, P. G., Heida, M. (2015). Discovery and analysis of a ULX nebula in NGC 3521. Mon. Not. R. Astron. Soc., 489, Is. 1, 1249-1264.
https://doi.org/10.1093/mnras/stz2127
38. Masci, F. J., Laher, R. R., Rusholme, B., et al. (2018). The Zwicky Transient Facility: Data Processing, Products, and Archive, PASP, 131, 995.
39. McGaugh, S. S. (2016). The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve. Astrophys. J., 816, Is. 1, 42.
https://doi.org/10.3847/0004-637X/816/1/42
40. Melnyk, O., Karachentseva, V., Karachentsev, I. (2015). Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey. Mon. Notic. Roy. Astron. Soc., 451, Is. 2, 14.
https://doi.org/10.1093/mnras/stv950
41. Moustakas, J., Kennicutt, R. C. J. (2006). An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies. Astrophys. J. Suppl. Ser., 164, Is. 1, 81-98.
https://doi.org/10.1086/500971
42. Moustakas, J., Kennicutt, R. C. J. (2007). VizieR Online Data Catalog: Spectrophotometry of nearby galaxies (Moustakas+, 2006). VizieR Online Data Catalog, J/ApJS/164/81.
https://doi.org/10.1086/500971
DOI: 10.26093/cds/vizier.21640081.
43. Muñoz-Mateos, J. C., Gil de Paz, A., Boissier, S., et al. (2009). Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. I. Surface Photometry and Morphology. Astrophys. J., 703, Is. 2, 1569-1596.
https://doi.org/10.1088/0004-637X/703/2/1569
DOI: 10.1088/0004-637X/703/2/1569, arXiv: 0909.2648 [astro-ph.CO].
44. Netzer, H. (1990). AGN emission. In Active Galactic Nuclei, eds. R.D. Blandford, H. Netzer, L. Woltjer.
https://doi.org/10.1007/978-3-662-39816-6_2
45. Noll, S., Burgarella, D., Giovannoli, E., et al. (2009). Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys., 507, Is. 3, 1793-1813.
46. Pilyugin, L. S., Tautvaišienė, G., Lara-López, M. A. (2023). Searching for Milky Way twins: Radial abundance distribution as a strict criterion. Astron. Astrophys., 676, A57.
https://doi.org/10.1051/0004-6361/202346503
47. Pulatova, N. G., Vavilova, I. B., Sawangwit, U., et al. (2015). The 2MIG isolated AGNs - I. General and multiwavelength properties of AGNs and host galaxies in the northern sky. Mon. Notic. Roy. Astron. Soc., 447, Is/ 3, 2209-2223.
https://doi.org/10.1093/mnras/stu2556
48. Pulatova, N. G., Vavilova, I. B., Vasylenko, A. A., et al. (2023). Radio properties of the low-redshift isolated galaxies with active nuclei. Kinemat. Phys. Celest. Bodies, 39, Is. 2, 47-72.
https://doi.org/10.15407/kfnt2023.02.047
49. Regan, M. W., Thornley, M. D., Vogel, S. N., et al. (2006). The Radial Distribution of the Interstellar Medium in Disk Galaxies: Evidence for Secular Evolution. Astrophys. J., 652, Is. 2, 1112-1121.
https://doi.org/10.1086/505382
50. Rosolowsky, E., Hughes, A., Leroy, A., et al. (2021). Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results. Mon. Not. R. Astron. Soc., 502, Is. 1, 1218-1245.
https://doi.org/10.1093/mnras/stab085
51. Schawinski, K., Kaviraj, S., Khochfar, S., et al. (2007). Observational evidence for AGN feedback in early-type galaxies. Mon. Not. R. Astron. Soc., 382, Is. 4, 1415-1431.
https://doi.org/10.1111/j.1365-2966.2007.12487.x
52. Serote Roos, M., Boisson, C., Joly, M. (1998). Stellar populations in active galactic nuclei - I. The observations. Mon. Not. R. Astron. Soc., 301, Is. 1, 1-14.
https://doi.org/10.1046/j.1365-8711.1998.01462.x
53. Spinoglio, L., Malkan, M. A. (1989). The 12 Micron Galaxy Sample. I. Luminosity Functions and a New Complete Active Galaxy Sample. Astrophys. J., 342, 83.
https://doi.org/10.1086/167577
54. Thornley, M. D. (1996). Uncovering Spiral Structure in Flocculent Galaxies. Astrophys. J., 469, 45.
https://doi.org/10.1086/310250
55. Van Gorkom, J. H., Knapp, G. R., Ekers, R. D., et al. (1986). The distribution and kinematics of H I in the active elliptical galaxy NGC 1052. Astrophys. J., 91, 791-807.
https://doi.org/10.1086/114060
56. Vasylenko, A. A., Vavilova, I. B., Pulatova, N. G. (2020). Isolated AGNs NGC 5347, ESO 438-009, MCG-02-04-090, and J11366-6002: Swift and NuSTAR joined view1. Astron. Nachr., 341, Is. 8, 801-811.
https://doi.org/10.1002/asna.202013783
57. Vavilova, I., Dobrycheva, D., Vasylenko, M. et al. (2020). Multiwavelength extragalactic surveys: Examples of data mining. Knowledge discovery in big data from astronomy and Earth observation, 1st Edition. Ed. by P. Skoda and A. Fathalrahman. Elsevier, 307-323.
https://doi.org/10.1016/B978-0-12-819154-5.00028-X
58. Vavilova, I. B., Dobrycheva, D. V., Vasylenko, M. Y., et al. (2021). Machine learning technique for morphological classification of galaxies from the SDSS. I. Photometry-based approach. Astron. and Astrophys., 648, id. A122, 14 p.
https://doi.org/10.1051/0004-6361/202038981
59. Vavilova, I. B., Fedorov, P. N., Dobrycheva, D. V. et al. (2024). An advanced approach for definition of the "Milky Way galaxies-analogues". Space Sci. & Technol., 30(4), 81-90.
https://doi.org/10.15407/knit2024.04.081
60. Vavilova, I. B., Khramtsov, V., Dobrycheva, D. V., et al. (2022), Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 https://doi.org/10.15407/knit2022.01.003
61. Vila-Vilaro, B., Cepa, J., Zabludoff, A. (2015). The Arizona Radio Observatory Survey of Molecular Gas in Nearby Normal Spiral Galaxies I: The Data. Astrophys. J. Suppl. Ser., 218, Is. 2, 28.
https://doi.org/10.1088/0067-0049/218/2/28
62. Vol'vach, A. E., Vol'vach, L. N., Kut'kin, A. M., et al. (2011). Multi-frequency studies of the non-stationary radiation of the blazar 3C 454.3. Astron. Rep., 55, Is. 7, 608-615.
https://doi.org/10.1134/S1063772911070092
doi: 10.1134/S1063772911070092
https://doi.org/10.1134/S1063772911070092
63. Walter, F., Brinks, E., de Blok, W. J. G., et al. (2008). THINGS: The H I Nearby Galaxy Survey. Astrophys. J., 136, Is. 6, 2563-2647.
https://doi.org/10.1088/0004-6256/136/6/2563
64. Warren, B. E., Wilson, C. D., Israel, F. P., et al. (2010). The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey. II. Warm Molecular Gas and Star Formation in Three Field Spiral Galaxies. Astrophys. J., 714, Is. 1, 571-588.
https://doi.org/10.1088/0004-637X/714/1/571
65. Zeilinger, W. W., Vega Beltrán, J. C., Rozas, M., et al. (2001). NGC 3521: Stellar Counter-Rotation Induced by a Bar Component. Astrophys. & Space Sci., 276, Is. 2/4, 643-650.
https://doi.org/10.1023/A:1017548101623
66. Zibetti, S., Groves, B. (2011). Resolved optical-infrared spectral energy distributions of galaxies: universal relations and their breakdown on local scales. Mon. Not. R. Astron. Soc., 417, Is. 2, 812-834.
https://doi.org/10.1111/j.1365-2966.2011.19286.x