Evolution of low-frequency radio absorption in 3C461
Heading:
| 1Stanislavsky, AA, 2Konovalenko, AA, 2Bubnov, IN, 2Stanislavsky, LA, 2Yerin, SN, 3Zarka, P, 4Vashchishyn, RV, 5Myrhorod, VI 1Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Astronomy of V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine 2Institute of Radio Astronomy of the National Academy of Science of Ukraine, Kharkiv, Ukraine 3LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris, France 4Poltava Gravimetric Observatory, Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Poltava, Ukraine 5National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine |
| Space Sci. & Technol. 2025, 31 ;(1):35-43 |
| https://doi.org/10.15407/knit2025.01.035 |
| Publication Language: English |
Abstract: Using the highly accurate and sensitive observations from July 13 to October 13, 2019, with the Giant Ukrainian Radio Telescope (GURT) in the correlation interferometer mode, we have investigated a monotonic trend of free-free absorption parameters from the absolute integrated spectrum of 3C461 (Cassiopeia A) measured at low frequencies. The form and peak of this spectrum depend on the magnitudes of the emission measure, the electron temperature, and the average number of charges of the ions for the internal and external absorbing ionized gas toward the supernova remnant (SNR). The most interesting information concerns the evolution of unshocked ejecta inside the SNR. Its emission measure, average number of charges of the ions, and temperature can change with time, and the absorption on the two halves of the shell indicates how the ejecta are heating up.
The study of the unshocked ejecta is a requisite step toward a better understanding of radio absorption evolution in Cassiopeia A. The trends from the GURT radio data were analyzed using the Mann–Kendall test and Sen’s method. This analysis is the first attempt to detect changes in the absorption parameters inside and outside this evolving SNR using continuous, broadband, and highly sensitive observations. We took into account the possible influence of radio interference on the trend detection results. Our study shows no trend in the absorption parameters. A possible reason for this result could be either the relatively short observation interval, together with the very slow change in absorption parameters, or the uneven nature of the changes in the evolution of absorption. Further measurements of the absolute flux-density spectrum obtained from Cassiopeia A with the help of low-frequency correlation interferometers (implemented on GURT, URAN-2, NenuFAR, and other appropriate radio telescopes) may contribute to the elucidation of the astrophysical processes responsible for thermal absorption in the SNR.
|
| Keywords: interstellar medium, Mann–Kendall test, radio astronomy observations, supernova remnant, thermal absorption |
References:
1. Acero, F. J., Carrasco, V. M. S., Gallego, M. C., et al. (2017).Extreme Value Theory and the New Sunspot Number Series. Astrophys. J., 839, 98.
https://doi.org/10.3847/1538-4357/aa69bc
2. Arias, M., Vink, J., de Gasperin, F., et al.(2018).Low-frequency radio absorption in Cassiopeia A. Astron. Astrophys., 612, A110.
https://doi.org/10.1051/0004-6361/201732411
3.Baars, J., Genzel, R., Pauliny-Toth, I., et al.(1977). The absolute spectrum of CAS A-An accurate flux density scale and a set of secondary calibrators. Astron. Astrophys., 61, 99-106.
4. Castelletti, G., Supan, L., Peters, W. M., et al.(2021). Astron.Astrophys., 653, A62.
https://doi.org/10.1051/0004-6361/202141635
5. Cox, D. R., Stuart, A.(1955). Some Quick Sign Tests for Trend in Location and Dispersion. Biometrika, 42, 80-95.
https://doi.org/10.1093/biomet/42.1-2.80
6. DeLaney, T., Kassim, N. E., Rudnick, L., et al. (2014). The density and mass of unshocked ejecta in Cassiopeia A through low frequency radio absorption. Astrophys. J., 785, 7.
https://doi.org/10.1088/0004-637X/785/1/7
7. Feigelson, E. D., Babu, G. J., Caceres, G. A. (2018). Autoregressive Times Series Methods for Time Domain Astronomy. Front. Phys., 6, 80.
https://doi.org/10.3389/fphy.2018.00080
8. George, S. V., Kachhara, S., Misra, R., et al.(2020). Early warning signals indicate a critical transition in Betelgeuse. Astron. Astrophys., 640, L21.
https://doi.org/10.1051/0004-6361/202038785
9. Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York: John Wiley and Sons.
10. Hamed, K. H., Rao, A. R. (1998). A Modified Mann-Kendall Trend Test for Autocorrelated Data. Journal of Hydrology, 204, 182-196.
https://doi.org/10.1016/S0022-1694(97)00125-X
11. Helsel, D. R., Hirsch, R. M. (1992).Statistical methods in water resources. Studies in Environmental Science 49. New York: Elsevier.
12. Hussain, Md. M., Mahmud, I. (2019). MannKendall: a python package for non parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556.
https://doi.org/10.21105/joss.01556
13. Kassim, N. E., Perley, R. A., Dwarakanath, K. S., et al. (1995). Evidence for Thermal Absorption inside Cassiopeia A. Astrophys. J., 455, L59.
https://doi.org/10.1086/309802
14. Kellermann, K. I. (2009).Setting the radio astronomy flux density scale. Astron. Astrophys., 500, 143-144.
https://doi.org/10.1051/0004-6361/200912153
15. Kendall, M. G..(1975). Rank Correlation Methods.4th edition.London: Charles Griffin.
16. Konovalenko, A., Sodin, L., Zakharenko, V., et al. (2016). The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Experim. Astron., 42, 11-48.
https://doi.org/10.1007/s10686-016-9498-x
17. Mann, H. B. (1945). Non-Parametric Test against Trend. Econometrica, 13, 245-259.
https://doi.org/10.2307/1907187
18. Pacholczyk, A. G. (1970). Radio Astrophysics: Nonthermal Processes in Galactic and Extragalactic Sources. San Francisco: W. H. Freeman and Co.
https://doi.org/10.1063/1.3022939
19. Raymond, J. C., Koo, B.-C., Lee, Y.-H., et al.(2018). The Temperature and Ionization of Unshocked Ejecta in Cas A.Astrophys. J., 866, 128.
https://doi.org/10.3847/1538-4357/aadf93
20. Shklovskii, I. S. (1960). Secular Variation of the Flux and Intensity of Radio Emission from Discrete Sources. Sov. Astron., 4, 243-249.
21. Shklovskii, I. S. (1960). The nature of supernovae. Sov. Astron., 4, 355-364.
22. Stanislavsky, A., Burnecki, K., Janczura, J., et al.(2019). Solar X-ray variability in terms of a fractional heteroskedastic time series model. Mon. Not. R. Astron. Soc., 485, 3970-3980.
https://doi.org/10.1093/mnras/stz656
23. Stanislavsky, L., Bubnov, I., Konovalenko, A., et al. (2023). Free-free absorption parameters of Cassiopeia A from low-frequency interferometric observations. Astron. Astrophys.,670, A157.
https://doi.org/10.1051/0004-6361/202245271
24. Uroševič, D. (2020). Determining the evolutionary status of supernova remnants. Nature Astron., 4, 910-912.
https://doi.org/10.1038/s41550-020-01228-5
https://doi.org/10.1038/s41550-020-01228-5
25. van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al.(2013). LOFAR: The LOw-Frequency ARray. Astron. Astrophys., 556, A2.
https://doi.org/10.1051/0004-6361/201220873
https://doi.org/10.1051/0004-6361/201220873
26. Vink, J. (2020). Physics and Evolution of Supernova Remnants. Switzerland: Springer Nature.
https://doi.org/10.1007/978-3-030-55231-2
https://doi.org/10.1007/978-3-030-55231-2
27. Wilson, T. L., Rohlfs, K., Hüttemeister, S. (2009). Tools of Radio Astronomy. Berlin:Springer-Verlag, 239-276.
https://doi.org/10.1007/978-3-540-85122-610
28. Zakharenko, V., Konovalenko, A., Zarka, P., et al. (2016).Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. Journal of Astronomical Instrumentation, 5, 1641010.
https://doi.org/10.1142/S2251171716410105
https://doi.org/10.1007/978-3-540-85122-610
28. Zakharenko, V., Konovalenko, A., Zarka, P., et al. (2016).Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. Journal of Astronomical Instrumentation, 5, 1641010.
https://doi.org/10.1142/S2251171716410105
