Modeling the stability of a throttle hydraulic drive of rocket and space systems under random load and stochastic parameters
Heading:
| 1Ivanchuk, Ya.V, 1Yarovyi, AA, 1Liman, VV, 1Ozeranskyi, VS, 1Kozlovskyi, OA 1Vinnytsia National Technical University, Vinnytsia, Ukraine |
| https://doi.org/10.15407/knit2025.01.017 |
| Publication Language: English |
Abstract: The use of a throttle hydraulic drive in rocket and space technology is promising due to its simplicity, reliability in operation, and low metal consumption. It has been determined that vibrations occur in the hydraulic system of rocket and space equipment under external influence. They cause unstable movement of working units, and, as a result, additional vibrations occur on the actuator. Determining the stability of the throttle hydraulic drive is relevant. This will ensure that the rocket and technical system maintains specified equilibrium states or types of motion. The article solves an important scientific and technical problem of increasing the accuracy of identifying the state of a hydraulic drive with throttle control under the action of a stochastic load in rocket and technical systems.
A mathematical model of the operation of a hydraulic drive with throttle control is developed based on its calculation scheme. A generalized method for mathematical modeling of the probability of system stability for the mathematical expectation under a random load and in the presence of one random parameter, namely, the modulus of elasticity of the working fluid, is developed. Linearization of viscous friction forces was performed, and the schedule of the standard deviation of the random modulus of elasticity of the working fluid in the Taylor series was used. A solution to the mathematical model in the form of differential equations using a technique based on statistical linearization and expansion in the Taylor series was proposed. In this case, the stability condition of the hydraulic system is determined by the mathematical expectation in the form of the Hurwitz criterion. The stability condition of the hydraulic drive with throttle control is determined based on the probability of system stability, where the value of the random external load is specified in the form of mathematical expectation and variance.
|
| Keywords: hydraulic drive; stochastic parameters; pressure; elastic modulus; stability; rocket and space technology |
References:
1. Debeleac C., Nastac S. (2014). Stochastic approaches of nonlinear model-based simulations for vibratory compaction process. PAMM, 14, No. 1, 749-750.
https://doi.org/10.1002/pamm.201410357
https://doi.org/10.1002/pamm.201410357
2. Fossen T. I., Nijmeijer H. (2012). Parametric resonance in dynamical systems. New York: Springer, 342 p.
3. Freye C. E., Fit B. D., Billingsley M. C., Synovec R. E. (2016). Partial least squares analysis of rocket propulsion fuel data using diaphragm valve-based comprehensive two-dimensional gas chromatography coupled with flame ionization detection.Talanta, No. 153, 203-210.
https://doi.org/10.1016/j.talanta.2016.03.016
https://doi.org/10.1016/j.talanta.2016.03.016
4. Hirmand M. R., Vahab M., Papoulia K. D., Khalili N. (2019). Robust simulation of dynamic fluid-driven fracture in naturally fractured impermeable media. Computer Methods in Applied Mechanics and Engineering, No. 357, 112-574.
https://doi.org/10.1016/j.cma.2019.112574
https://doi.org/10.1016/j.cma.2019.112574
5. Iskovych-Lototsky R. D., Ivanchuk Y. V., Veselovska N. R., Surtel W., Sundetov S. (2018). Automatic system for modeling vibro-impact unloading bulk cargo on vehicles. Proc. SPIE 10808: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080860.
https://doi.org/10.1117/12.2501526
6. Iskovych-Lototsky R. D., Ivanchuk Y. V., Veselovsky Y. P., Gromaszek K., Oralbekova A. (2018). Automatic system for modeling of working processes in pressure generators of hydraulic vibrating and vibro-impact machines. Proc. SPIE 10808: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080850.
https://doi.org/10.1117/12.2501532
7. Iskovich-Lototsky R. D., Kots I. V., Ivanchuk Y. V., Ivashko Y. I., Gromaszek K., Mussabekova A., Kalimoldayev M. (2019). Terms of the stability for the control valve of the hydraulic impulse drive of vibrating and vibro-impact machines. Przeglad Elektrotechniczny, No. 4(19), 19-23.
https://doi.org/10.15199/48.2019.04.04
https://doi.org/10.1117/12.2501526
6. Iskovych-Lototsky R. D., Ivanchuk Y. V., Veselovsky Y. P., Gromaszek K., Oralbekova A. (2018). Automatic system for modeling of working processes in pressure generators of hydraulic vibrating and vibro-impact machines. Proc. SPIE 10808: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080850.
https://doi.org/10.1117/12.2501532
7. Iskovich-Lototsky R. D., Kots I. V., Ivanchuk Y. V., Ivashko Y. I., Gromaszek K., Mussabekova A., Kalimoldayev M. (2019). Terms of the stability for the control valve of the hydraulic impulse drive of vibrating and vibro-impact machines. Przeglad Elektrotechniczny, No. 4(19), 19-23.
https://doi.org/10.15199/48.2019.04.04
8. Ivanchuk Y., Manzhilevskyy O., Belzetskyi R., Zamkovyi O., Pavlovych R. (2022). Modelling of piling technology by vibroimpac device with hydropulse drive. Scientific Horizons, 25, No. 1, 9-20.
https://doi.org/10.48077/scihor.25(1).2022.9-20
https://doi.org/10.48077/scihor.25(1).2022.9-20
9. Jiao X., Zhang J., Li W., Wang Y., Ma W., Zhao Y. (2023). Advances in spacecraft micro-vibration suppression methods Progress in Aerospace Sci., No. 138, 100898.
https://doi.org/10.1016/j.paerosci.2023.100898
https://doi.org/10.1016/j.paerosci.2023.100898
10. Kang Sh., Yan H., Dong L., Li Ch. (2018). Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model. Mechanical Systems and Signal Processing, No. 102, 117-138.
https://doi.org/10.1016/j.ymssp.2017.09.009
11. Kartashova E. (2011). Nonlinear resonance analysis: Theory, computation, applications. New York: Cambridge Univ. Press, 287 p.
https://doi.org/10.1017/CBO9780511779046
https://doi.org/10.1016/j.ymssp.2017.09.009
11. Kartashova E. (2011). Nonlinear resonance analysis: Theory, computation, applications. New York: Cambridge Univ. Press, 287 p.
https://doi.org/10.1017/CBO9780511779046
12. Masum Mostafizur R. (2024). Introduction to Space Launch and Transportation System, 224 p.
https://doi.org/10.13140/RG.2.2.10413.50408.
13. Murín J., KompiÓ V., KutiÓ V. (2011). Computational modelling and advanced simulations. Dordrecht: Springer, 312 p.
https://doi.org/10.1007/978-94-007-0317-9
14. New South Wales., Manly Hydraulics Laboratory, & Sydney Water. Hydraulic modelling of head loss in under-pressure cutin connections for Sydney Water Corporation. Manly Vale. N.S.W: Manly Hydraulics Laboratory, 28. 15. Pang Y. L., Dai D. M. (2014). Simulation of Dynamic Compaction on Soft Soil Foundation. Adv. Mater. Res., No. 989-
994, 2373-2376.
https://doi.org/10.4028/www.scientific.net/AMR.989-994.2373
16. Pei X., Wang Xi., Liu J., Zhu M., Dan Zh., He Ai., Miao K., Zhang L., Xu Zh. (2023). A review of modeling, simulation and control technologies of altitude ground test facilities for control application. Chinese J. Aeronautics, No. 36(9), 38-62.
https://doi.org/10.1016/j.cja.2023.07.014
17. Perestiuk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V. (2011). Differential equations with impulse effects
Multivalued right-hand sides with discontinuities. Berlin: De Gruyter, 287 p.
https://doi.org/10.1515/9783110218176
https://doi.org/10.13140/RG.2.2.10413.50408.
13. Murín J., KompiÓ V., KutiÓ V. (2011). Computational modelling and advanced simulations. Dordrecht: Springer, 312 p.
https://doi.org/10.1007/978-94-007-0317-9
14. New South Wales., Manly Hydraulics Laboratory, & Sydney Water. Hydraulic modelling of head loss in under-pressure cutin connections for Sydney Water Corporation. Manly Vale. N.S.W: Manly Hydraulics Laboratory, 28. 15. Pang Y. L., Dai D. M. (2014). Simulation of Dynamic Compaction on Soft Soil Foundation. Adv. Mater. Res., No. 989-
994, 2373-2376.
https://doi.org/10.4028/www.scientific.net/AMR.989-994.2373
16. Pei X., Wang Xi., Liu J., Zhu M., Dan Zh., He Ai., Miao K., Zhang L., Xu Zh. (2023). A review of modeling, simulation and control technologies of altitude ground test facilities for control application. Chinese J. Aeronautics, No. 36(9), 38-62.
https://doi.org/10.1016/j.cja.2023.07.014
17. Perestiuk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V. (2011). Differential equations with impulse effects
Multivalued right-hand sides with discontinuities. Berlin: De Gruyter, 287 p.
https://doi.org/10.1515/9783110218176
18. Ponomarov O. (2019). Ground-based experimental testing of elements of automation of pneumatic-hydraulic systems of rocket and space technology. J. Rocket-Space Technology, 27, No. 4, 58-61.
https://doi.org/10.15421/451909
19. Qiu Zh., Yuan X., Wang D., Fan S., Wang Q. (2023). Physical model driven fault diagnosis method for shield. Machine hydraulic system. Measurement, 220, 113436.
https://doi.org/10.1016/j.measurement.2023.113436
20. Ram M., Davim J. P. (2017). Mathematics applied to engineering. London, United Kingdom: Acad. Press, 457 p.
https://doi.org/10.1016/C2015-0-06715-6
https://doi.org/10.15421/451909
19. Qiu Zh., Yuan X., Wang D., Fan S., Wang Q. (2023). Physical model driven fault diagnosis method for shield. Machine hydraulic system. Measurement, 220, 113436.
https://doi.org/10.1016/j.measurement.2023.113436
20. Ram M., Davim J. P. (2017). Mathematics applied to engineering. London, United Kingdom: Acad. Press, 457 p.
https://doi.org/10.1016/C2015-0-06715-6
21. Reinicke A. (2011). Mechanical and hydraulic aspects of rock-proppant systems: Laboratory experiments and modelling approaches. PhD Thesis, (Scientific Technical Report; 11/09), Potsdam: Deutsches GeoForschungsZentrum GFZ, 140 p.
https://doi.org/10.2312/GFZ.b103-11098
22. Shatokhin V. M., Sobol V. N., Wojcik W., Mussabekova A., Baitussupov D. (2019). Dynamical processes simulation of vibrational mounting devices and synthesis of their parameters. Przeglad Elektrotechniczny, 4, No. 19, 86-92.
https://doi.org/10.15199/48.2019.04.15
23. Singh V. P. (2014). Entropy theory in hydraulic engineering: An introduction. Reston, Virginia: Amer. Soc. Civil Eng., 358 p.
https://doi.org/10.1061/9780784412725
24. Trompette P., Axisa F. (2005). Modelling of Mechanical Systems: Structural Elements. Butterworth-Heinemann, 306 p.
25. Urbanowicz K., Bergant A., Stosiak M., Karpenko M., Bogdevičius M. (2023). Developments in analytical wall shear stress modelling for water hammer phenomena. J. Sound and Vibration, 562, 117848.
https://doi.org/10.1016/j.jsv.2023.117848
https://doi.org/10.2312/GFZ.b103-11098
22. Shatokhin V. M., Sobol V. N., Wojcik W., Mussabekova A., Baitussupov D. (2019). Dynamical processes simulation of vibrational mounting devices and synthesis of their parameters. Przeglad Elektrotechniczny, 4, No. 19, 86-92.
https://doi.org/10.15199/48.2019.04.15
23. Singh V. P. (2014). Entropy theory in hydraulic engineering: An introduction. Reston, Virginia: Amer. Soc. Civil Eng., 358 p.
https://doi.org/10.1061/9780784412725
24. Trompette P., Axisa F. (2005). Modelling of Mechanical Systems: Structural Elements. Butterworth-Heinemann, 306 p.
25. Urbanowicz K., Bergant A., Stosiak M., Karpenko M., Bogdevičius M. (2023). Developments in analytical wall shear stress modelling for water hammer phenomena. J. Sound and Vibration, 562, 117848.
https://doi.org/10.1016/j.jsv.2023.117848
26. Woś P., Dindorf R. (2019). Modeling and identification of the hydraulic servo drive. EPJ Web of Conf., 213:02100.
https://doi.org/10.1051/epjconf/201921302100
https://doi.org/10.1051/epjconf/201921302100
27. Zhang J., Ma Zh., Wang X., Wu Q., Zhang L. (2023). Transient vibration of shafting in coupled hydraulic-mechanicalelectrical- structural system for hydropower station during start-up process. Appl. Mathem. Model., No. 124, 860-880.
https://doi.org/10.1016/j.apm.2023.08.041
https://doi.org/10.1016/j.apm.2023.08.041
