Constraints on the interaction strength in the model of interacting dynamical dark energy with linear and non-linear interacting terms

1Neomenko, RG
1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine
Space Sci. & Technol. 2025, 31 ;(1):44-52
https://doi.org/10.15407/knit2025.01.044
Publication Language: English
Abstract: 
In this work, the observational constraints on the coupling parameter of the interaction between dynamical dark energy and cold dark matter were obtained using cosmic microwave background data, baryon acoustic oscillations, and type Ia supernova data. The dark energy in considered models is dynamic, and the evolution of its equation of state parameter depends on dark coupling and internal properties of the dark energy itself. Such a model is believed to be more physically consistent than models of interacting dark energy considered in previous works. Constraints were made for three types of interaction. The first two are the types which are often considered in other works on interacting dark energy and are linearly dependent on the energy densities of dark components. The third type has a non-linear dependence on these densities and is studied for the first time. Observational constraints on the Hubble constant  for the first two models strongly disagree with so-called local measurements of . And The third model aligns more closely with local measurements than the ΛCDM model. Also, for the first two types of interaction models, only the existence of small upper bounds of the interaction parameter was found,  as for the last non-linear model, the existence of non-zero interaction was found at greater than 1σ significance level.
Keywords: cosmological perturbations, dark matter, interacting dark energy
References: 
[1] Aghanim N., Akrami Y., Ashdown M., et al. (2020). Planck 2018 results V. CMB power spectra and likelihoods. Astron. Astrophys., 641, A5.
https://doi.org/10.1051/0004-6361/201936386
 
[2] Aghanim N., Akrami Y., Ashdown M., et al. (2020). Planck 2018 results VIII. Gravitational lensing. Astron. Astrophys., 641, A8.
https://doi.org/10.1051/0004-6361/201833886
 
[3] Alam S., Ata M., Bailey S., et al. (2017). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc., 470(3), 2617-2652.
https://doi.org/10.1093/mnras/stx721
 
[4] Amendola L. (2000). Coupled quintessence. Phys. Rev. D, 62(4), 043511.
https://doi.org/10.1103/PhysRevD.62.043511
 
[5] Amendola L., Campos G. C., Rosenfeld R. (2007). Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data. Phys. Rev. D, 75(8), 083506.
https://doi.org/10.1103/PhysRevD.75.083506
 
[6] An R., Feng C., Wang B. (2018). Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models. J. Cosmol. Astropart. Phys., 2018(02), 038.
https://doi.org/10.1088/1475-7516/2018/02/038
 
[7] Beutler F., Blake C., Colless M., Jones D. H., Staveley-Smith L., Campbell L., Parker Q., Saunders W., Watson F. (2011). The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. Roy. Astron. Soc., 416(4), 3017-3032.
https://doi.org/10.1111/j.1365-2966.2011.19250.x
 
[8] Chimento L. P., Jakubi A. S., Pav'on D., Zimdahl W. (2003). Interacting quintessence solution to the coincidence problem. Phys. Rev. D, 67(8), 083513.
https://doi.org/10.1103/PhysRevD.67.083513
 
[9] Costa A. A., Xu X.-D., Wang B., Abdalla E. (2017). Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data. J. Cosmol. Astropart. Phys., 2017(01), 028.
https://doi.org/10.1088/1475-7516/2017/01/028
 
[10] Di Valentino E., Melchiorri A., Mena O. (2017). Can interacting dark energy solve the H0 tension? Phys. Rev. D, 96(4), 043503.
https://doi.org/10.1103/PhysRevD.96.043503
 
[11] Di Valentino E., Melchiorri A., Mena O., Vagnozzi S. (2020). Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D, 101(6), 063502.
https://doi.org/10.1103/PhysRevD.101.063502
 
[12] Gavela M. B., Hern'andez D., Lopez Honorez L., Mena O., Rigolin S. (2009). Dark coupling. J. Cosmol. Astropart. Phys., 2009(07), 034.
https://doi.org/10.1088/1475-7516/2009/07/034
 
[13] Jackson B. M., Taylor A., Berera A. (2009). On the large-scale instability in interacting dark energy and dark matter fluids. Phys. Rev. D, 79(4), 043526.
https://doi.org/10.1103/PhysRevD.79.043526
 
[14] Lewis A., Bridle S. (2002). Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D, 66(10), 103511.
https://doi.org/10.1103/PhysRevD.66.103511
 
[15] Lewis A., Challinor A., Lasenby A. (2000). Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models. Astrophys. J., 538(2), 473-476.
https://doi.org/10.1086/309179
 
[16] Li Y.-H., Zhang J.-F., Zhang X. (2014). Parametrized post-Friedmann framework for interacting dark energy. Phys. Rev. D, 90(6), 063005.
https://doi.org/10.1103/PhysRevD.90.063005
 
[17] Li Y.-H., Zhang X. (2023). IDECAMB: an implementation of interacting dark energy cosmology in CAMB. J. Cosmol. Astropart. Phys., 2023(09), 046.
https://doi.org/10.1088/1475-7516/2023/09/046
 
[18] Neomenko R. (2021). Interacting dynamical dark energy with stable high-scale cosmological perturbations at radiation
dominated epoch. Mod. Phys. Lett. A, 36(22), 2150154.
https://doi.org/10.1142/S0217732321501546
 
[19] Neomenko R. (2024). Constraints on the interaction of quintessence dark energy with dark matter and the evolution of its equation of state parameter. J. Phys. Stud., 28(1), 1903.
https://doi.org/10.30970/jps.28.1903
 
[20] Neomenko R., Novosyadlyj B. (2016). Dynamics of expansion of the Universe in the models with nonminimally coupled dark energy. Kinemat. Phys. Celest. Bodies, 32(4), 157-171.
https://doi.org/10.3103/S088459131604005X
 
[21] Neomenko R., Novosyadlyj B. (2020). Evolution of cosmological perturbations in the models with interacting dynamical dark energy. J. Phys. Stud., 24(2), 2902.
https://doi.org/10.30970/jps.24.2902
 
[22] Neomenko R., Novosyadlyj B., Sergijenko O. (2017). Dynamics of expansion of the Universe in models with the additional coupling between dark energy and dark matter. J. Phys. Stud., 21(3), 3901.
https://doi.org/10.30970/jps.21.3901
 
[23] Novosyadlyj B., Sergijenko O., Durrer R., Pelykh V. (2013). Quintessence versus phantom dark energy: the arbitrating power of current and future observations. J. Cosmol. Astropart. Phys., 2013(06), 042.
https://doi.org/10.1088/1475-7516/2013/06/042
 
[24] Pan S., Sharov G. S., Yang W. (2020). Field theoretic interpretations of interacting dark energy scenarios and recent observations. Phys. Rev. D, 101(10), 103533.
https://doi.org/10.1103/PhysRevD.101.103533
 
[25] Perlmutter S., Aldering G., Goldhaber G., et al. (1999). Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J., 517(2), 565-586.
https://doi.org/10.1086/307221
 
[26] Riess A. G., Filippenko A. V., Challis P., et al. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J., 116(3), 1009-1038.
https://doi.org/10.1086/300499
 
[27] Riess A. G., Yuan W., Macri L. M., et al. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett., 934(1), L7.
https://doi.org/10.3847/2041-8213/ac5c5b
 
[28] Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M. (2015). The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15. Mon. Not. Roy. Astron. Soc., 449(1), 835-847.
https://doi.org/10.1093/mnras/stv154
 
[29] Scolnic D. M., Jones D. O., Rest A., et al. (2018). The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J., 859(2), 101.
https://doi.org/10.3847/1538-4357/aab9bb
 
[30] Väliviita J., Majerotto E., Maartens R. (2008). Large-scale instability in interacting dark energy and dark matter fluids. J. Cosmol. Astropart. Phys., 2008(07), 020.
https://doi.org/10.1088/1475-7516/2008/07/020
 
[31] Zimdahl W., Pavon D., Chimento L. P. (2001). Interacting quintessence. Phys. Lett. B, 521(3), 133-138.
https://doi.org/10.1016/S0370-2693(01)01174-1