Laser communication experiments with a geostationary satellite from a ground telescope

1Kuzkov, VP, 2Sodnik, Z, 1Kuzkov, SV, 3Volovyk, DV, 3Pukha, S
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2ESA/ESTEC, Noordwijk, The Netherlands
3National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(2):51-55
https://doi.org/10.15407/knit2008.02.051
Publication Language: English
Abstract: 
The Main Astronomical Observatory of the NAS of Ukraine is currently developing all necessary hardware to perform laser communication experiments between its 0.7-m telescope and the ARTEMIS satellite. Laser communication equipment will be installed in the Cassegrain focus of the AZT-2 telescope. Continuing the previous developments dealing with receiving and transmitting channels, the acquisition and tracking systems are now being developed, as well as a turbulence compensation system, which will reduce the pointing errors during the communication with ARTEMIS. The description of the performed work and some test results are given in the paper.
Keywords: geostationary satellite, laser communication experiments, pointing errors
References: 
1. Alonso A., Reyes M., Sodnik Z., et al. Performance of satellite-to-ground communications link between ARTEMIS and the Optical Ground Station. Proc. SPIE, 5572, 372—383 (2004).
https://doi.org/10.1117/12.565516
2. Khatri F. I., Boroson D. M., Murphy D. V., et al. Link analysis of Mars-Earth optical communications system. Proc. SPIE, 5338, 143—150 (2004).
https://doi.org/10.1117/12.543009
3. Kuz'kov V., Andruk V., Sodnik Z., et al. Investigation of Atmospheric Instability for Communication Experiments with ESA's Geostationary Satellite ARTEMIS. Kinematics and Physics of Celestial Bodies. Suppl., No. 5, 561—565 (2005).
4. Kuz'kov V. P., Medvedskii M. M., Yatskiv D. Ya., et al. Preparation for optical Communication Experiments with the Geostationary Satellite ARTEMIS. Kosm. nauka tehnol., 9 (4), 79—83 (2003).
5. Kuz'kov V. P., Nedashkovskii V. N. Receiving system for ground-space laser communication. Kosm. nauka tehnol. Suppl., No. 2, 106—109 (2003).
6. Kuz'kov V. P., Nedashkovskii V. N. A Receiver with an Avalanche Photodiode for the Optical Communication Channel from a Geostationary Satellite. Instruments and Experimental Techniques, 47 (4), 513— 515 (2004).
https://doi.org/10.1023/B:INET.0000038399.39871.02
7. Kuz'kov V. P., Nedashkovskii V. N., Savenkov S. N., et al. Investigation of the polarization of the laser transmitting module for communication experiments with the geostationary satellite ARTEMIS (ESA) . Kosm. nauka tehnol., 12 (1), 23—28 (2006).
8. Reyes M., Alonso A., Sodnik Z., et al. Ground to space optical communication characterization. Proc. SPIE, 5892, 1 — 16 (2005).
9. Reyes M., Sodnik Z., Lopez P., et al. Preliminary results of the in-orbit test of ARTEMIS with the Optical Ground Station. Proc. SPIE, 4635, 38—49 (2002).
https://doi.org/10.1117/12.464083
10. Tolker-Nielsen T., Oppenhauser G. In-orbit test result of an operational optical inter satellite link between ARTEMIS and SPOT4, SILEX. Proc. SPIE, 4635, 1 — 15 (2002).
https://doi.org/10.1117/12.464105
11. Toyoshima M., Yamakawa S., et. al. Ground-to-satellite optical link tests between the Japanese laser communication terminal and the European geostationary satellite ARTEMIS. Proc. SPIE, 5338, 1 — 15 (2004).
https://doi.org/10.1117/12.530138

12. Renaud F. Laser guide stars: principle, cone effect and tilt measurement. In: Proc. NATO Advanced Study Institute on Optics in Astrophysics. Cargese, France, 16—28 September 2002, 249—273 (NATO Sci. Ser. II. Mathematics, Physics and Cemistry; Vol. 198) (Springer, Berlin, 2005).