Coupling of the weather system in the atmosphere and in space

1Yampolski, Yu.M, 1Zalizovski, AV, 1Zanimonskiy, EM, 2Lizunov, GV, 1Lisachenko, VN
1Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(5):006-036
https://doi.org/10.15407/knit2008.05.006
Publication Language: Russian
Abstract: 
The paper summarizes the results of the three-year research project concerning the transfer of powerful atmospheric disturbances to geospace altitudes. Atmospheric gravity waves (AGW) are the principal agent to execute this energy transfer. When traveling upward, linear AGWs can produce a periodic modulation of plasma parameters in the ionosphere. The growth of nonlinear AGW in amplitude causes turbulization of the plasma, which manifests itself as sporadic structures appearing in the E-and F-regions. The two mechanisms of AGW conversion to electric disturbances are illustrated on the basis of data from extended observations performed in Antarctica, New England (USA) and Europe.
Keywords: atmospheric gravity waves, ionosphere, plasma turbulization
References: 
1.  Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere. Handbook, 509 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
2. Afraimovich E. L., Bashkuev Yu. B., Berngardt O. I., et al. Detection of traveling ionospheric disturbances from the data of simultaneous measurements of the electron concentration, total electron content, and Doppler frequency shift at the ISTP radiophysical complex. Geomagnetizm i Aeronomiia, 44 (4), 463—475 (2004) [in Russian].
3. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S., Ushakov I. I. Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network. Izv. vuzov. Radiofizika, 64 (10), 828—839 (2001) [in Russian].
4. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
5. Gershman B. N. Dynamics of the ionospheric plasma, 256 p. (Nauka, Moscow, 1974) [in Russian].
6. Gershman B. N., Kazimirovsky E. S., Kokourov V. D., Chernobrovkina N. A. Spread-F Events in the Ionosphere, 143 p. (Nauka, Moscow, 1984) [in Russian].
7. Gill A. E. Atmosphere-Ocean Dynamics. Vols.1-2: Vol.1, 397 p.; Vol. 2, 410 p. (Mir, Moscow, 1986) [in Russian].
8. Gossard E. E., Hooke W. H. Waves in the  Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian].
9. Danilov A. D., Kazimirovsky E. S., Vergasova G. V., Khachikyan G. Ya. Meteorological effects in the ionosphere, 272 p. (Gidrometeoizdat, Leningrad, 1987) [in Russian].
10. Zalizovski A. V. The Role of Tropospheric Processes in Forming the Sporadic Layers of E Ionospheric Region over the Antarctic Peninsula. Radio Physics and Radio Astronomy, 13 (1), 26 —38 (2008) [in Russian].
11. Zalizovski A. V., Yampolski Yu. M. The Spread-F Effect as an Indicator of Troposphere – Ionosphere Coupling. Radio Physics and Radio Astronomy, 12 (1), 33 —42 (2007) [in Russian].
12. Korepanov V. Ye., Lytvynenko L. M., Lytvynov V. A., et al. Space experiments ground support electromagnetic polygon at Ukrainian Antarctic Station. Kosm. nauka tehnol., 10 (2-3), 74—80 (2004) [in Russian].
13. Kunitsyn V. E., Suraev S. N., Akhmedov R. R. Numerical Simulation of Acoustic-Gravity Waves Propagation in the High Altitude Atmosphere for Periodical Sources. Jelektromagnitnye volny i jelektronnye sistemy, 12 (4), 4—8 (2007) [in Russian].
14. Lisachenko V. N., Zanimonskiy Y. M., Yampolski Yu. M., Wielgosz P. Investigation of Ionospheric Total Electron Content Variations in the Antarctic Peninsula Region. Radio Physics and Radio Astronomy, 12 (1), 20—32 (2007) [in Russian].
15. Parkinson W. D. Introduction to Geomagnetism, Transl. from Eng., 528 p. (Mir, Moscow, 1986) [in Russian].
16. Pikulik I. I., Kashcheyev S. B., Galushko V. G., Yampolsky Yu. M. HF-receiver equipment for frequency-and-angular sounding of the ionosphere in Antarctica. Ukr. antarkticheskij zhurn., No. 1, 61—69 (2003) [in Russian].
17. Pugachev V. S. Probability Theory and Mathematical Statistics, 496 p. (Nauka, Moscow, 1979) [in Russian].
18. Silin P. V., Zalizovski A. V., Yampolski Yu. M. Ionospheric Spread-F Effects as Observed at the Antarctic Base “Akademik Vernadsky”. Radio Physics and Radio Astronomy, 10 (1), 30—37 (2005) [in Russian].
19. Chernogor L. F. Energetics of the Processes Occurring on the Earth, in the Atmosphere and Near-Earth Space in Connection with the Project "Early Warning". Kosm. nauka tehnol., 5 (1), 38—47 (1999) [in Russian].
https://doi.org/10.15407/knit1999.01.038
20. Chernogor L. F. The tropical cyclone as an element of the Earth - atmosphere - ionosphere - magnetosphere system. Kosm. nauka tehnol., 12 (2-3), 16—36 (2006) [in Russian].
21. Litvinenko L. N., Yampolsky Yu. M. (Eds.) Electromagnetic phenomenon of geophysical effects in Antarctica, 331 p. (Institute of Radioastronomy of NASU, Kharkov, 2005) [in Russian].
22. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., et al. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Physics and Radio Astronomy, 9 (2), 130 — 151 (2004) [in Russian].
23. ACCIA Report, Arctic Climate Impact Assessment, 140 p. (Univ. Press, Cambridge, 2004).
24. Afraimovich E. L., Boitman O. N., Zhovty E. I., et al. Dynamics and anisotropy of traveling ionospheric disturbances from transionospheric sounding data. Radio Sci., 34 (2), 477—487 (1999).
https://doi.org/10.1029/1998RS900004
25. Afraimovich E. L., Palamarchuk K. S., Perevalova N. P. GPS radio interferometry of traveling ionospheric disturbances. J. Atmos. and Solar-Terr. Phys., 60, 1205—1223 (1998).
https://doi.org/10.1016/S1364-6826(98)00074-1
26. Bauer S. Correlation between tropospheric and ionospheric parameters. Geofisica Pura e Applicata, 40, 235 (1958).
https://doi.org/10.1007/BF01980131
27. Beley V. S., Galushko V. G., Yampolski Y. M. Traveling ionospheric disturbance. Diagnostics using HF signal trajectory parameter variations. Radio Sci., 30 (6), 1739—1752 (1995).
https://doi.org/10.1029/95RS01992
28. Booker H. G. The role of acoustic gravity waves in the generation of spread-F echoes and ionospheric scintillation. J. Atmos. and Terr. Phys., 41 (5), 501 — 515 (1979).
https://doi.org/10.1016/0021-9169(79)90074-6
29. Bowman G. G. Movements of ionospheric irregularities and gravity waves. J. Atmos. and Terr. Phys., 30, 721—734 (1968).
https://doi.org/10.1016/S0021-9169(68)80028-5
30. Chao J. K., Chen H. H. Prediction of Southward IMF Bz. In: Song P., Singer H. J., Siscoe G. L. (Eds) Space weather, 201—204 (Geophysical monograph; 125) (2000).
31. Francis S. H. Global propagation of atmospheric gravity waves: a review. J. Atmos. and Terr. Phys., 37, 1011 — 1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
32. Galushko V. G., Paznukhov V. V., Yampolski Y. M., Foster J. C. Incoherent scatter radar observations of AGV/TID events generated by the moving solar terminator. Ann. Geophys., 16, 821—827 (1998).
https://doi.org/10.1007/s00585-998-0821-3
33. Galushko V. G., Beley V. S., Koloskov A. V., et al. Frequency-and-Angular HF Sounding and VHF ISR Diagnostics of TIDs. Radio Sci., 38 (6), 1102—1113 (2003).
https://doi.org/10.1029/2002RS002861
34. Galushko V. G., Kashcheyev A. S., Kashcheyev S. B., et al. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. and Solar-Terr. Phys., 69, 403—410 (2007).
https://doi.org/10.1016/j.jastp.2006.05.010
35. Georges T. M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. and Terr. Phys., 30, 735—746 (1968).
https://doi.org/10.1016/S0021-9169(68)80029-7
36. Hauf T., Finke U., Neisser J., et al. A ground-based network for atmospheric pressure fluctuations. J. Atmos. and Oceanic Technol., 13 (5), 1001 — 1022 (1996).
https://doi.org/10.1175/1520-0426(1996)013<1001:AGBNFA>2.0.CO;2
37. Hines C. O. Internal gravity waves at ionospheric heights. Can. J. Phys., 38, 1441 — 1481 (1960).
38. Hines C. O. The upper atmosphere in motion. American Geophysical Union. (Washington, D. C., 1974).
39. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Position System: Theory and Practice, 327 p. (Springer-Verlag, Wien, New York, 1992).
40. Jankovski J., Sucksdorf C. Guide for magnetic measurements and observatory practice, 235 p. (Warshaw, 1996).
41. Kahler S. W. Origin and Properties of Solar Energetic Particles in Space. In: Song P., Singer H. J., Siscoe G. L. (Eds) Space weather, 109—122. (Geophysical monograph; 125) (2000).
42. Krycski J., Zanimonskiy Y. M. Investigation of Regional Troposphere Processes Using EPN Data. In: Symposium of EUREF held in Toledo, Spain, 4-7 June 2003, EUREF Publication N 13, Mitteilungen des Bundesamtes für Kartographie und Geodasie, B. 33, 416—422 (Frankfurt am Main, 2003).
43. Klimchuk J. A. Theory of coronal mass ejection. In: Song P., Singer H. J., Siscoe G. L. (Eds) Space weather, 143—158. (Geophysical monograph; 125) (2000).
44. Lizunov G. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Eds M. Hayakawa, O. A. Molchanov, 371—374 (Tokyo, TERRAPUB, 2002).
45. Lundstedt H. Solar Activity Prediction with Artificial Intelligence. In: Song P., Singer H. J., Siscoe G. L. (Eds) Space weather, 201—204. (Geophysical monograph; 125) (2000).
46. Rice C. J., Sharp L. R. Neutral atmospheric waves in the thermosphere and tropospheric weather systems. Geophys. Res. Lett., 4 (8), 315—318 (1977).
47. Robinson R. M., Benke R. A. The US National Space Program: A Retrospective. In: Song P., Singer H. J., Siscoe G. L. (Eds) Space weather, 1 — 10. (Geophysical monograph; 125) (2000).
48. Russel C. T., McPherron R. L. Semiannual variation of geomagnetic activity. J. Geophys. Res., 78, 92—108 (1973).
49. Shanklin J. Module Automatic Weather Station. User Manual 1997/98. BAS (1997).
50. Wakai N., Ohyama H., Koizumi T. Manual of Ionogram Scaling. Third Version. (Japan, Radio Research Laboratory, Ministry of Post and Telecommunications, 1987).
51. Wielgosz P., Kashani I., Grejner-Brzezinska D., et al. Regional Ionosphere Modeling Using Smoothed Pseudoranges. Presented at the 5th International Antarctic Geodesy Symposium (AGS'03), Lviv, Ukraine, 15—17 Sept. 2003, SCAR Report N 23, 37— 41 (Cambridge, UK, 2005).

52. Yampolski Y. M., Bliokh P. V., Beley V. S., et al. Non-linear interaction between Schumann resonances and HF Signals. J. Atmos. and Solar-Terr. Phys., 59 (3), 335—342 (1997).