Comparison of ground-based and satellite total ozone measurements over the antarctic station Akademik Vernadsky (1996–2005)

1Evtushevsky, OM, 1Grytsai, AV, 2Milinevsky, GP, 1Kravchenko, VO, 1Grytsai, ZI
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(5):074-084
Publication Language: Ukrainian
The influence of observation conditions (cloudiness, solar zenith angle, total ozone content (TOO values) on the data disagreement is analyzed through the comparison of ground-based and satellite TOC measurements over the Antarctic station Akademik Vernadsky. After transition from Iі to 8і Version of satellite algorithm in 2004, the agreement between the Dobson spectrophotometer and ЕР-TOMS spectrometer measurement results did not change essentially. A mean positive difference of 1.8 % in 1th was replaced by a negative one of -2 % in 8й Version. Mean difference values for cloudless (4.1 %, 137 days) and cloudy (-4.5 %, 1048 days) sky are evidences of the dependence of the satellite and ground-based daily TOC values discrepancy on the cloudiness presence. This dependence remains unchanged in comparison results for both Versions of the TOMS data: mean TOMS - Dobson differences under the observation conditions of clear and cloudy sky are distinguished by almost 9 %. The TOMS - Dobson difference dependence on the observation conditions can point to some overestimation of the ground-based data by the satellite ones under the clear sky and the reverse relationship under the cloudy sky. The largest data disagreement is revealed in the ozone hole period (September – October) for the observations under the cloudy sky conditions. Our results allow one to improve the TOC observation accuracy with regard to the atmosphere state.
Keywords: data disagreement, observation conditions, total ozone content
1. Milinevsky G. P., Leonov M. A., Gritsai Z. I., et al. Ozone measurements from Antarctic station Akademik Vernadsky in 1996-2000. Bulletin of Kyiv University. Astronomy, No. 38, 63—69 (2002) [in Ukrainian].
2. Balis D., Kroon M., Koukouli M. E., et al. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J. Geophys. Res., 112 (D24), D24S46 (2007).
3. Bernhard G., Evans R. D., Labow G. J., Oltmans S. J. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass. J. Geophys. Res., 110 (D10), D10305 (2005).
4. Bhartia P. K., Wellemeyer C. W. TOMS V8 Algorithm theoretical basis document. (2004). Available:
5. Bramstedt K., Gleason J., Loyola D., et al. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996—2000. Atm. Chem. Phys., 3 (5), 1409—1419 (2003).
6. Brogniez C, Houet M., Siani A. M., et al. Ozone column retrieval from solar UV measurements at ground level: effects of clouds and results from six European sites. J. Geophys. Res., 110 (D24), D24202 (2005).
7. Gritsai Z. I., Evtushevsky A. M., Leonov N. A., Milinevsky G. P. Comparison of ground-based and TOMS-EP total ozone data for Antarctica and northern midlatitude stations (1996—1999). Phys. Chem. Earth (B), 25 (5-6), 459—461 (2000).
8. Grytsai A. V., Evtushevsky O. M., Agapitov O. V., et al. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25 (2), 361—374 (2007).
9. Jaross G., Taylor S. L., Wellemeyer C. G., et al. An assessment of long-term uncertainties using Total Ozone Mapping Spectrometers (TOMS). Int. J. Rem. Sens., 24 (2), 329—338 (2003).
10. Kulinich B. V., Evtushevsky A. M., Leonov N. A., Milinevsky G. P. Seasonal change of difference between the ground-based and EP-TOMS satellite ozone measurements. Ukr. antarktychnyj zhurn., No. 3, 5—9 (2005).
11. Kylling A., Dahlback A., Mayer B. The effect of clouds and surface albedo on UV irradiances at a high latitude site. Geophys. Res. Lett., 27 (9), 1411 — 1414 (2000).
12. Labow G. J., McPeters R. D., Bhartia P. K. A comparison of TOMS and SBUV version 8 total column ozone data with data from groundstations. In: Zerefos C. (Ed.) Proc. Quadr. Ozone Symp., 1—8 June 2004, Kos, Greece, 1, 123—124 (Athens, Greece, 2004).
13. Lambert J.-C, Van Roozendael M., Simon P. C, et al. Combined characterization of GOME and TOMS total ozone measurements from space using ground-based observations from the NDSC. Adv. Space Res., 26 (12), 1931 — 1940 (2000).
14. McPeters R. D., Bhartia P. K., Krueger A. J., et al. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA Technical Publication 1998—206895, 70 p. (Goddard Space Flight Center, Greenbelt, Maryland, 1998).
15. McPeters R. D., Labow G. J. An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS version 7 ozone data by comparison with the Dobson network. Geophys. Res. Lett., 23 (25), 3695—3698 (1996).
16. Piacentini R. D., Crino E., Flores J. S., Ginzburg M. Intercomparison between ground based and TOMS/EP satellite southern hemisphere ozone data. New results. Adv. Space Res., 29 (11), 1643—1648 (2002).
17. Schoeberl M. R., Krueger A. J., Newman P. A. The morphology of Antarctic total ozone as seen by TOMS. Geophys. Res. Lett., 13 (12), 1217—1220 (1986).
18. Scientific assessment of ozone depletion: 1998. Report N 44 (World Meteorological Organization, Geneva, 1999).
19. Stolarski R. S., McPeters R. D., Newman P. A. The ozone hole of 2002 as measured by TOMS. J. Atm. Sci., 62 (3), 716—720 (2005).
20. Vanicek K. Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech. Atm. Chem. Phys., 6 (12), 5163—5171 (2006).
21. Varotsos C. A. On the correction of the total ozone content over Athens, Greece as deduced from satellite observations. Int. J. Rem. Sens., 16 (10), 1771 — 1776 (1995).