Temporal variations of differential rotation of active regions and coronal holes and their relationship with solar activity level

1Zelyk, Ya.I, 2Stepanian, NN, 3Andreyeva, OA
1Space Research Institute of the National Academy of Science of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
2Scientific-Research Institute “Crimean Astrophysical Observatory” of the Ministry for Education and Science of Ukraine, Nauchny, AR Crimea, Ukraine
3Scientific-Research Institute “Crimean Astrophysical Observatory” of the Ministry for Education and Science of Ukraine, Nauchny, Crimea, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(6):018-038
https://doi.org/10.15407/knit2008.06.018
Publication Language: Ukrainian
Abstract: 
We determined the principle of temporal variations of differential rotation of solar active regions and coronal holes with the solar cycle course from observations of them in the upper chromosphere. The principle of rotational change of these structures in accordance with the solar activity level are revealed.
Keywords: coronal holes, rotation, solar activity
References: 
1. Andryeyeva O. A., Zyelyk Ya. I., Stepanian N. N. Rotation of Solar Structures in the Upper Chromosphere. I. Average Parameters  of Rotation during Three Solar Cycles. Izv. Krym. astrofiz. observatorii, 102, 84— 98 (2006) [in Russian].
2. Andryeyeva O. A., Stepanian N. N., Zyelyk Ya. I. On the nature of the rotation of solar structures in the upper chromosphere in 21, 22 and 23 solar cycles. In: Multi-Wavelength investigations of the Sun and modern problems of solar activity: Abstracts of the Intern. Conf., Nizhniy Arkhyz, September 28 — October 2, 2006, 18 (SAO RAN, 2006) [in Russian].
3. Badalyan O. G., Obridko V. N., Rybák J., Sýkora J. Quasibiennial Oscillations of the North-South Asymmetry. Astron. zhurn., 82 (8), 740—752 (2005) [in Russian].
4. Bendat J. S., Piersol A. G. Random Data: Analysis and Measurement Procedures, 540 p. (Mir, Moscow, 1989) [in Russian].
5. Vasil'eva V. V., Makarov V. I., Tlatov A. G. Rotation cycles of the sector structure of the solar magnetic field and its activity. Pis'ma v Astron. zhurn., 28 (3), 228—234 (2002) [in Russian].
6. Zyelyk Ya., Stepanian N., Andreeva O. Rotation of active regions and coronal holes from observations of the Sun in the line He I λ1083 nm. Kosm. nauka tehnol., 10 (5-6), 138—140 (2004) [in Russian].
7. Zyelyk Ya I., Stepanian N. N., Andreeva O. A. Technology of estimating the rotation of solar structures from observations in the line He λ 1083 nm. In: 5th Ukrainian Conference on Space Research: Abstracts, NCUIKS, Evpatoria, September 4-11, 2005, 193 (IKI NANU-NKAU, Kiev, 2005) [in Russian].
8. Zyelyk Ya I., Stepanian N. N., Andreeva O. A. Investigation of the differential rotation of solar structures in the upper chromosphere. In: Cosmos and Biosphere: Abstracts of the VI International Crimean Conference, Partenit, Crimea, September 26 — October 1, 2005, 23—25 (Crimean Scientific Center of NASU-MESU, 2005) [in Russian].
9. Zyelyk Ya I., Stepanian N. N., Andryeyeva O. A. On some methods of estimation of solar structure rotation from observations of the Sun in the line He I λ 1083 nm. Kosm. nauka tehnol., 12 (1), 85—89 (2006) [in Russian].
10. Zyelyk Y. I., Stepanyan N. N., Andryeyeva O. A. On applying the apparatus of analyzing the time series to estimation of solar structures rotations in the upper chromosphere. Problemy upravlenija i informatiki, No. 3, 102—115 (2006) [in Russian].
11. Zyelyk Ya I., Stepanian N. N., Andreeva O. A. Change in global characteristics of solar rotation from observations in the line He I X 1083 nm. In: 6th Ukrainian Conference on Space Research: Abstracts, NCUIKS, Evpatoria, September 3-10, 2006, 20 (IKI NANU-NKAU, Kiev, 2006) [in Russian].
12. Zyelyk Y. I., Stepanyan N. N., Andryeyeva O. A. Time variations of global characteristics of Sun rotation. Problemy upravlenija i informatiki, No. 1, 127—135 (2007) [in Russian].
13. Zyelyk Ya. I., Stepanian N. N., Andryeyeva O. A. Spectral methods for analyzing the rotation of solar structures. Izv. Krym. astrofiz. observatorii, 103 (1), 56—69 (2007) [in Russian].
14. Zyelyk Ya I., Stepanian N. N., Andreeva O. A. Latitudinal-temporal changes in the rotation of solar structures and its relationship to the level of solar activity. In: 7th Ukrainian Conference on Space Research: Abstracts, Crimea, Evpatoria, September 3-8, 2007, 46 (IKI NANU-NKAU, Kyiv, 2007) [in Russian].
15. Zyelyk Ya I., Stepanian N. N., Andreeva O. A. Rotation of active solar formations in three cycles and its relation to the level of solar activity. In: Cosmos and Biosphere: Abstracts of the VII International Crimean Conference, Sudak, Crimea, October 1—6, 2007, 37—39 (Izdatel' V. S. Martynjuk, Kiev, 2007) [in Russian].
16. Kotov V. A., Haneychuk V. I., Tsap T. T. New measurements of the mean magnetic field of the Sun and its rotation. Astron. zhurn., 87 (3), 218—222 (1999) [in Russian].
17. Stepanian N. N. Variations of the differential rotation of the solar background magnetic fields. Izv. Krym. astrofiz. observatorii, 67, 59— 65 (1983) [in Russian].
18. Stepanyan N. N. Coronal holes and background magnetic fields on the Sun. In: Solar cycle [Solnechnyj cikl]: Sbornik nauch. tr., 44—55 (FTI RAN, Moscow, 1993) [in Russian].
11. Tlatov A. G. Long-term variations in the rotation and distribution of large-scale magnetic fields of the Sun: Extended abstract of Doctors thesis, 32 p. (The Central Astronomical Observatory of the RAS at Pulkovo, St. Petersburg, 2006) [in Russian].
20. Hayes M. H. Statistical digital signal processing and modeling, 789 p. (John Wiley & Sons, New York, 1996).
21. Oppenheim A. V., Schafer R. W. Discrete-time signal processing, 730—742 (Prentice-Hall, Englewood Cliffs, NJ, 1989).
22. Persival D. B., Walden A. T. Spectral analysis for physical applications: multitaper and conventional univariate techniques. (Cambridge University Press, 1993).
https://doi.org/10.1017/CBO9780511622762
23. Schuster A. On the investigation of hidden periodicities. Terrest. Magn., 3, 13—41 (1898).
https://doi.org/10.1029/TM003i001p00013
24. Schuster A. The periodogramm and its optical analogies. Proc. Roy. Soc., 77, 136 (1906).
https://doi.org/10.1098/rspa.1906.0011

25. Welch P. D. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics, AU-15, 70— 73 (1967).