Construction of dynamic models of the photospheric and chromospheric layers of solar flares for studying the conditions of their appearance and evolution

1Shchukina, NG, 1Kondrashova, NM, 1Khomenko, OV, 1Kostyk, RI, 1Chornogor, SM, 1Alikaeva, KV, 1Olshevsky, VL, 1Osipov, SM, 1Andriyenko, OV
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(6):052-068
https://doi.org/10.15407/knit2008.06.052
Publication Language: Russian
Abstract: 
Spectropolarimetric observations of quiet and active regions of the solar surface have been carried out. Physical processes which take place in photospheric and chromospheric layers of active regions before and during the flare were investigated. A set of semi-empirical models of flares and active regions which describe evolution of velocity field, magnetic field, and temperature with time has been created. Dynamical processes in the quiet photosphere, such as granulation and small-scale magnetic fields were studied. These processes define major photospheric properties and stimulate non-radiative energy transfer into the upper layers – chromosphere and corona. Probability Distribution Functions of the small-scale magnetic fields in the internetwork were obtained. Energy flux produced by such fields was estimated. The parameters of the convective component of granulation velocity field and intensity field were found. Their correlation was studied at heights from the continuum formation level to the temperature minimum. MHD-wave propagation in the solar atmosphere in non-uniform structures with magnetic field have been modeled. Wave transformation and energy transport was also studied. New diagnostic and software tools for interpretation of spectropolarimetric observations were developed. These tools account for anisotropic structure of the solar atmosphere and small-scale magnetic fields. These results were obtained as a part of research project: "Construction of dynamic models of the photospheric and chromospheric layers of solar flares for studying the conditions of their appearance and evolution". This project is a part of basic research program of NASU: "Construction of theory, methods, and informational technologies for complex study of Sun- Earth relations as a basis of space-weather forecasts".
Keywords: dynamical processes, quiet photosphere, semi-empirical models of flares and active regions
References: 
1. Alikaeva K. V., Kondrashova N. N. Disturbance of the photosphere during solar two-ribbon flare. Kinematika i Fizika Nebesnykh Tel, 22 (3), 163—172 (2006) [in Russian].
2. Kondrashova N. N., Prokudina V. S. Chromospheric motions in a large solar flare. Kinematika i Fizika Nebesnykh Tel, 22 (4), 271—282 (2006) [in Russian].
3. Kondrashova N. N., Chornogor S. N. Physical state of the photosphere in front of a two-beam solar flare and at its beginning. In: 6th Ukrainian Conference on Space Research: Abstracts, 21 (Evpatoria, 2006) [in Russian].
4. Kostyk R. I. Fluctuations and waves in the Sun's atmosphere. In: Relativistic astrophysics, Gravitation and Cosmology in honour of prof. O. F. Bogorodsky: Abstracts of 7th Intern. Conf., 38 (Kyiv, 2007) [in Ukrainian].
5. Kostyk R. I., Shchukina N. G. Fine Structure of Convective Motions in the Solar Photosphere: Observations and Theory. Astron. zhurn., 81 (9), 846— 858 (2004) [in Russian].
6. Chornogor S. N., Kashapova L. K., Zharkova V. V., Andrienko O. V. Multiwave observations of the solar flare on July 25, 2004 from space and ground observatories. In: 6th Ukrainian Conference on Space Research: Abstracts, 23 (Evpatoria, 2006) [in Russian].
7. Chornogor S. N., Kondrashova N. N. Features of the physical state of the photosphere in the initial phase of the development of a solar two-tape flare. In: Relativistic astrophysics, Gravitation and Cosmology in honour of prof. O. F. Bogorodsky: Abstracts of 7th Intern. Conf., 22 (Kyiv, 2007) [in Russian].
8. Alikaeva K. V., Kondrashova N. N. Photospheric model transformation in the course of a solar two-ribbon flare. IAU XXVIth General Assembly: Abstract Book, 277 (Prague, 2006).
9. Chornogor S. N., Baranovsky E. A., Alikaeva K. V. Simulation of the Hα loops during bright solar flare. In: The Dynamic Sun: Challenges for Theory and Observations: 11th European Solar Physics Meeting. (ESA SP-600)-SPM-11, Leuven, Belgium, 11 — 16 September 2005; Publ. CDROM, 114.1 (2006).
10. Chornogor S. N., Kashapova L. K., Andriyenko O. V. The evolution of H-alpha and Ca II K emission before and during the solar M-class flare on 25th July 2004. In: Solar Activity and its Magnetic Origin: Proceedings of the International Astronomical Union, Symp. 233, Cairo, Egypt, 31 March—4 April 2006, Eds V. Bothmer, A. A. Hady, Vol. 2, 122—123 (2006).
11. Chornogor S. N., Kashapova L. K., Sych R. A., Andriyenko O. V. Preflare HXR and chromospheric line emission in NOAA 0652 on 25th July 2004. In: The Dynamic Sun: Challenges for Theory and Observations: Proc. 11th European Solar Physics Meeting (ESA SP-600), SPM-11, Leuven, Belgium, 11-16 September 2005; Publ. CDROM, 115.1 (2006).
12. Chornogor S. N., Kashapova L. K., Sych R. A., Andriyenko O. V. The evolution of H-alpha and Ca II K emission before and during the solar M-class flare on 25th July 2004. In: Solar activity and its magnetic origin: IAU Symp. 233: Abstract Book, Cairo, Egypt, 31 March — 4 April 2006, 49 (2006).
13. Chornogor S. N., Kondrashova N. N. Comparison of photospheric physical conditions before and in the onset of a solar two-ribbon flare. IAU XXVI th General Assembly, Prague, Czech Rep., August 14 — 25, 2006: Abstract Book, 277 (2006).
14. Chornogor S. N., Kondrashova N. N. Photospheric physical conditions before a two-ribbon solar flare. In: Solar Activity and its Magnetic Origin: Proc. of the International Astronomical Union, Symp. 233, Vol. 2, Cairo, Egypt, 31 March — 4 April 2006, Eds V. Bothmer, A. A. Hady, 381—382 (2006).
https://doi.org/10.1017/S1743921306002237
15. Chornogor S. N., Kondrashova N. N. Photospheric physical conditions before a two-ribbon solar flare. In: Solar activity and its magnetic origin: IAU Symp. 233: Abstract Book, Cairo, Egypt, 31 March — 4 April 2006, 142 (2006).
https://doi.org/10.1017/S1743921306002237
16. Gandorfer A. The Second Solar Spectrum. Vol. I: 4625 Å to 6995 Å. (VdF, Zurich, 2000).
17. Gandorfer A. The Second Solar Spectrum. Vol. II: 3910 Å to 4630 Å. (VdF, Zurich, 2002).
18. Gandorfer A. The Second Solar Spectrum. Vol. III: 3161 Å to 3913 Å. (VdF, Zurich, 2005).
19. Khomenko E. Magnetic flux in the inter-network quiet Sun. In: Boulder Workshop Proc. on Solar Polarization — 4, Astron. Soc. Pacif. Conf. Ser., Eds R. Casini, B. Lites, 42—47 (2005).
20. Khomenko E. Diagnostics of Quiet-Sun Magnetism Solar MHD Theory and Observations: A High Spatial Resolution Perspective. In: Proceedings of the Conference Held 18—22 July, 2005, at the National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA, Eds J. Leibacher, R. F. Stein, H. Uitenbroek; ASP Conference Series, Vol. 354, 63 (Astronomical Society of the Pacific, San Francisco, 2006).
21. Khomenko E., Collados M. On the Determination of Magnetic Field Strength and Flux in Inter-Network Solar Polarization 4. In: Proceedings of the conference held 19—23 September, 2005, in Boulder, Colorado, USA, Eds R. Casini, B. W. Lites; ASP Conference Series, Vol. 358, 42 (2005).
22. Khomenko E., Collados M. Simulations of Acoustic Waves in Sunspots. In: Proc. of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields (ESA SP-596), 30 August — 2 September 2005, Katlen-burg-Lindau, Germany, Eds D. E. Innes, A. Lagg, S. K. Solanki; Publ. on CDROM, 40.1 (2005).
23. Khomenko E., Collados M. Magnetic field inversions from Stokes profiles generated by MHD simulations. Memorie della Soc. Astron. Italiana, 78, 166 (2006).
24. Khomenko E. V., Collados M. Numerical modelling of MHD wave propagation and refraction in sunspots. Astrophys. J., 653 (1), 739—755 (2006).
https://doi.org/10.1086/507760
25. Khomenko E., Collados M. On the Stokes V Amplitude Ratio as an Indicator of the Field Strength in the Solar Internetwork. Astrophys. J., 659 (2), 1726—1735 (2007).
https://doi.org/10.1086/512098
26. Khomenko E., Collados M. Line ratio method applied to inter-network magnetic fields in Modern solar facilities — advanced solar science. In: Proc. of a Workshop held at Gottingen, September 27—29, 2006. Euros Published by Universitatsverlag Gottingen http://univerlag.uni-goettin-gen.de The online edition (PDF, 12 MB) is available free of charge at: http://webdoc.sub.gwdg.de/univerlag/2007/ solar_science_ book.pdf, P. 303
27. Khomenko E. V., Collados M., Solanki S. K., et al. Quiet-Sun inter-network magnetic fields observed in the infrared. Astron. and Astrophys., 408, 1115—1135 (2003).
https://doi.org/10.1051/0004-6361:20030604
28. Khomenko E., Kostik R. Studying the magnetism of the quiet Sun: diagnostic techniques and results. J. Phys. Studies, 10 (4), 381—391 (2006).
29. Khomenko E. V., Martinez Gonzalez M. J., Collados M., et al. Magnetic flux in the internetwork quiet Sun. Astron. and Astrophys., 436 (2), L27—L30 (2005).
https://doi.org/10.1051/0004-6361:200500114
30. Khomenko E. V., Shelyag S., Solanki S. K., Vogler A. Stokes diagnostics of simulations of magnetoconvection of mixed-polarity quiet-Sun regions. Astron. and Astrophys., 442 (3), 1059—1078 (2005).
https://doi.org/10.1051/0004-6361:20052958
31. Kostik R. I. Fine structure of convective motions in the solar photosphere. Kinematics and Physics of Celestial Bodies. Suppl., No. 5, 134—137 (2005).
32. Olshevsky V., Khomenko E., Collados M. Numerical modeling of MHD wave propagation in sunspots: a 3D case. In: Modern solar facilities — advanced solar science: Proc. of a Workshop, held at Gottingen, September 27—29, 2006, 347—351 (Universitatsverlag Gottingen, 2007).
33. Shchukina N. G., Trujillo Bueno J. The impact of non-LTE effects and granulation inhomogeneities on the derived iron and oxygen abundances in metal-poor halo stars. Astrophys. J., 618, 939—952 (2005).
https://doi.org/10.1086/426012
34. Shchukina N. G., Trujillo Bueno J. The iron line formation problem in three-dimensional hydrodynamical models of solar-like photospheres. Astrophys. J., 550, 950—970 (2001).
https://doi.org/10.1086/319789
35. Shchukina N. G., Trujillo Bueno J. The magnetic fields of the quiet solar photosphere. In: Multi-Wavelength Investigations of Solar Activity: Proc. IAU Symp. N. 223, Eds A. V. Stepanov, E. E. Benevolenskaya, A. G. Kosovichev, 483—484 (Univ. Press, Cambridge, 2004).
https://doi.org/10.1017/S1743921304006611
36. Shchukina N. G., Trujillo Bueno J. Modelling the second solar spectrum of Til. In: Workshop on Solar Polarization — 4: Abstract book, 325 (2005).
37. Socas-Navarro H., Borrero J., Asensio Ramos A., et al. Multiline quiet Sun spectropolarimetry at 5250 and 6302 Å. Astrophys. J. (2007).
38. Trujillo Bueno J., Shchukina N. G. The scattering polarization of the Sr I 4607 line at the diffraction limit resolution of a 1 m telescope. Astrophys. J., 664, L135—L138 (2007).
https://doi.org/10.1086/520838
39. Trujillo Bueno J., Shchukina N., Asensio Ramos A. A substantial amount of hidden magnetic energy of the quiet Sun. Nature, 430, 326—329 (2004).
https://doi.org/10.1038/nature02669
40. Trujillo Bueno J., Shchukina N., Asensio Ramos A. The Hanle effect in atomic and molecular lines: A new look at the Sun's hidden magnetism. Solar Polarization 4: ASO Conf. Ser., 358, 269—292 (2006).
41. Vernazza J. E., Avrett E. H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser., 45 (4), 635—725 (1981).
https://doi.org/10.1086/190731
42. Vogler A., Shelyag S., Schossler M., Cattaneo F., Emonet T., Linde T. Simulation of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. and Astrophys., 429, 335—351 (2005).
https://doi.org/10.1051/0004-6361:20041507
43. Zharkova V. V., Andriyenko O. V., Chornogor S. N., Kashapova L. K. The multi-wavelength study of the effect of energetic particle beams on the chromospheric emission in the 25th July 2004 solar flares. Adv. Space Res., 39 (9), 1483—1490 (2007).
https://doi.org/10.1016/j.asr.2007.04.004
44. Zharkova V. V., Andriyenko O. V., Chornogor S. N., et al. The multi-wavelength study of the effect of energetic particle beams on the chromospheric emission in the 20th and 25th July 2004 solar flares. In: 36th COSPAR Scientific Assembly Beijing, China, 16 — 23 July 2006; E2.3/D2.6/E3.6 Energetic Particles and Magnetic Recon-nection on the Sun and in the Heliosphere: Abstract Book, 2256 (2006).
45. Zharkova V. V., Gordovskyy M. Particle acceleration asymmetry in a reconnecting nonneutral current sheet. Astrophys. J., 604, 884—891 (2004).
https://doi.org/10.1086/381966

46. Zharkova V. V., Kashapova L. K., Chornogor S. N., et al. Signatures of high energy particle beams in the chromos-pheric events prior the 25 July 2004 flare onset. In: XXVIth General Assembly in Prague, Czech Republic, August 14—25, 2006: Abstract Book, P. 47 (2006).