Data fusion Grid segment

1Kussul, N, 2Hluchy, L, 3Shelestov, A, 4Skakun, S, 5Kravchenko, O, 5Ilin, M, 5Gripich, Yu., 6Lavrenyuk, A
1Space Research Institute of the National Academy of Science of Ukraine and the National Space Agency of Ukraine, Kyiv, National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
2Institute of Informatics of Slovak Academy of Sciences, Bratislava,Slovakia
3Space Research Institute of the National Academy of Science of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
4Integration-Plus LTD
5Space Research Institute of the National Academy of Science of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine
6Space Research Institute of the National Academy of Sciences of Ukraine and the National Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(2):49-55
https://doi.org/10.15407/knit2009.02.049
Publication Language: English
Abstract: 
This paper presents a Grid infrastructure that is being developed at the Space Research Institute NASU-NSAU, and integrates the resources of several geographically distributed organizations. The use of Grid technologies is motivated by the need to make computations in the near real-time for fast response to natural disasters and to manage large volumes of satellite data. We use the Grid infrastructure for a number of applications that heavily rely on Earth observation data. The applications include: weather prediction, flood monitoring, biodiversity assessment, crop yield prediction, and Earth land parameters estimation.
Keywords: data volumes, Grid infrastructure, monitoring
References: 
1. Bishop C. Pattern Recognition and Machine Learning, 740 p. (Springer, New York, 2006).
2. Corbley K. P. Radar Imagery Proves Valuable in Managing and Analyzing Floods Red River flood demonstrates operational capabilities. Earth Observation Magazine, 8 (10) (1999). Available: http://www.eomonline.com/Common/ Archives/1999dec/99dec_corbley.html
3. DEGREE — Earth Science White Paper on Grids. Available: http://www.eu-degree.eu/DEGREE/internal-section/ wp6/DEGREE-D6.1.2_v2.8.pdf
4. Feret J. B., FranHois C., Asner G. P., et al. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ., 112 (6), 3030–3043 (2008).
5. Foster I. The Grid: A New Infrastructure for 21st Century Science. Phys. Today, 55 (2), 42–47 (2002).
6. Fusco L., Cossu R., Retscher C. Open Grid Services for Envisat and Earth Observation Applications. In: High performance computing in remote sensing, Eds A. J. Plaza, C.-I. Chang, 237–280 (Taylor & Francis Group, New York, 2007).
7. Fusco L., Goncalves P., Linford J., et al. Putting Earth-Observation on the Grid. ESA Bull., 114, 86–91 (2003).
8. Horritt M. S. A methodology for the validation of uncertain flood inundation models. J. Hydrology, 326, 153–165 (2006).
9. Kogan F., Stark R., Gitelson A., et al. Derivation of Pasture Biomass in Mongolia from AVHRR-based Vegetation Health Indices. Int. J. Remote Sens., 25 (14), 2889–2896 (2004).
10. Kravchenko O., Kussul N. Simulation cascade of NWP and land surface model for drought monitoring. European Geosciences Union General Assembly. (Vienna, Austria, 2008).
Available: http://www.cosis.net/abstracts/ EGU2008/00582/EGU2008-A-00582.pdf
11. Kussul N., Ilin M., Skakun S., Lavrenuk A. Crop state estimation and winter wheat yield prediction using remote sensing data. In: Decision Making and Business Intelligence, Strategies and Techniques, Eds K. Markov, K. Ivanova, I. Mitov. (Int. Book Ser., 3, 103–109). (2008).
12. Kussul N., Shelestov A., Skakun S., Kravchenko O. Data Assimilation Technique for Flood Monitoring and Prediction. Int. J. Inform. Theory and Applications, 15 (1), 76–84 (2008).
13. Liang S. Quantitative Remote Sensing of Land Surfaces, 534 p. (Wiley Inc., New Jersey, 2004).
14. Novotny J., Russell M., Wehrens O. GridSphere: An Advanced Portal Framework. Proc. of the 30th EURO-MICRO Conf., 412–419 (2004).
15. Popov M., Kussul N., Stankevich S., et al. Web Service for Biodiversity Estimation Using Remote Sensing Data. Int. J. Digital Earth, 1 (4), 367–376 (2008).
16. Shelestov A., Kussul N., Skakun S. Grid Technologies in Monitoring Systems Based on Satellite Data. J. Automation and Inf. Sci., 38 (3), 69–80 (2008).
17. Wagner W., Pathe C., Sabel D., et al. Experimental 1 km soil moisture products from ENVISAT ASAR for Southern Africa. ENVISAT & ERS Symp. (Montreux, Switzerland, 2007).