Elaboration of scientific-technological foundations for up-to-date heat pipe design for space application on the basis of the materials of the INTAS-CNES-NSAU project

1Baturkin, VM
1National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine
Kosm. nauka tehnol. 2009, 15 ;(2):16-30
https://doi.org/10.15407/knit2009.02.016
Publication Language: Ukrainian
Abstract: 
We give a survey of basic results of the international project No 06-1000024-8916 in the framework of collaboration between the Centre National d’Etudes Spatiales (CNES), the International Association for promotion of cooperation with scientists from the New Independent States of the former Soviet Union (INTAS) and the National Space Agency of Ukraine (NSAU) in the field of space thermal control technology. In the project, the emphasis is on the detailed study of modern heat pipes with axial grooves.
Keywords: heat pipe, INTAS-CNES-NSAU project, space thermal control technology
References: 
1. Alyamovskii A. A., Sobachkin A. A., Odintsov E. V., et al. Solid Works: Computer Simulation in Engineering Practice, 170—173 (BKhV, St. Petersburg, 2005) [in Russian].
2. Andreyanov V. V., Artamonov V. V., Atmanov I. T., et al. Automatic Planetary Stations, 280 p. (Nauka, Moscow, 1973) [in Russian].
3. Bazhan P. I., Kanevets G. E., Seliverstov V. M. Handbook of heat exchangers, 366 p. (Mashinostroyeniye, Moscow, 1989) [in Russian].
4. Barantsevich V. L., Opryshko S. I., Shemjatovskaja R. A. Development and testing of low-temperature heat pipes with longitudinal grooves. In: Teplovye truby: teploobmen, gidrodinamika, tehnologija: Mater. mezhotraslevoj konf. «Teplofizicheskie issledovanija-1979», Pt. 2, 82—89 (Obninsk, 1980) [in Russian].
5. Baturkin V. M. Experience of application of the European standart PSS-49 at the development of  heat pipes for termal control of BIRD microsatellite. Tehnologija i konstruirovanie v jelektronnoj apparature, No. 1 (67), 52—58 (2007) [in Russian].
6. Belan N. V., Bezruchko K. V., Eliseev V. B., Romankevich A. V. Application of heat pipes in airborne power systems of aircrafts, 151 p. (Kharkiv Aviation Institute, Kharkiv, 1984) [in Russian].
7. Bogdanov S. N., Ivanov O. P., Kupriyanova A. V. Refrigeration equipment. Properties of substances: Handbook, 3rd rev. and enlarged ed., 208 p. (Agropromizdat, Moscow, 1985) [in Russian].
8. Vargaftik N. B. Handbook of Thermophysical Properties of Gases and Liquids, 720 p. (Nauka, Moscow, 1972) [in Russian].
9. Vasiliev L. L., Grakovich L. P., Khrustalev D. K. Heat pipes in systems with renewable energy sources 160 p. (Nauka i tekhnika, Minsk, 1988) [in Russian].
10. Dan P., Ray D. Heat pipes, transl. from Eng., 272 p. (Energy, Moscow, 1979) [in Russian].
11. Ivanovskii M. N., Sorokin V. P., and Yagodkin I. V. The Physical Principles of  Heat Pipes, 256 p. (Atomizdat, Moscow, 1978) [in Russian].
12. Malkov M. P., Danilov I. B., Zeldovich A. G., Fradkov A. B. Handbook of physical and technical fundamentals of cryogenics, 3rd rev. and enlarged ed., Ed. by M. P. Malkov, 432 p. (Energoatomizdat, Moscow, 1985) [in Russian].
13. Voronin G. I. (Ed.) Low-temperature heat pipes for aircraft, 200 p. (Mashinostroenie, Moscow, 1976) [in Russian].
14. Perelshtein I. I., Parushin E. B. Thermodynamic and Thermophysical Properties of Refrigerants for Refrigerating Machines and Heat Pumps, 232 p. (Legkaja i pishhevaja prom-st', Moscow, 1984) [in Russian].
15. Sverdlov G. Z., Yanvel' B. K. Course and diploma design of refrigeration and air conditioning systems, 2nd rev. and enlarged ed., 90 p. (Pishhevaja prom-st', Moscow, 1978) [in Russian].
16. Semena M. G., Gershuni A. N., Zaripov V. K. Heat pipes with metal-fibrous capillary structures, 215 p. (Vyscha shcola, Kiev, 1984) [in Russian].
17. Smirnov G. F., Tsoi A. D. Heat exchange during vapor generation in capillary and  capillary- porous wicks, 439 p. (Izd-vo MEI, Moscow, 1999) [in Russian].
18. Petukhov B. S., Shikov V. K. (Eds) Handbook of heat exchangers, Transl. from Eng., Vol. 1, 126—127 (Energoatomizdat, Moscow, 1987) (Vols. 1-2; Vol. 1) [in Russian].
19. Wong H. Y. Essential Formulae and Data on Heat Transfer for Engineers: Handbook, Transl. from Eng., 216 p. (Atomizdat, Moscow, 1979) [in Russian].
20. Favorsky O. N., Kadaner Ya. S. Questions of heat transfer in space: textbook for students, 2nd enl. ed., 280 p. (Vyssh. shk., Moscow, 1972) [in Russian].
21. Hufshimidt V., Burk E., Kola G., et al. The influence of tangential stresses arising during the movement of steam on the laminar flow of liquid in the capillaries of the thermowells. In: Spielrein E. E. (Ed.), Heat Pipes, 203—243 (Mir, Moscow, 1972) [in Russian].
22. Chi S. W. Heat Pipe: Theory and Practice, Transl. from Eng., 207 p. (Mashinostroenie, Moscow, 1981) [in Russian].
23. Barantsevich V., Goncharov K. Aspects of Miniature Axial Groove Heat Pipes Development. Proc. VII Minsk International Seminar, Minsk, Belarus, September 8— 11, 2008, 110—114 (Minsk, 2008).
24. Barantsevich V., Goncharov K., Orlov A., Golovin O. Investigation Results of Axial Grooved Heat Pipes with High Thermal Capacity. Proc. 31st International Conference on Environmental Systems, SAE, July 9—12, 2001, Orlando, USA, 7 p. (Report 2001-01-2236) (Orlando, 2001).
25. Barantsevich V. L., Opryshko S. I. Studies of Heat Pipes with Combined Capillary Structure. Preprint of International Conference on Heat Transfer in Energy Conservation, October 6—9, 1988, Shenyang, China, 247—250 (Shenyang, 1988).
26. Barantsevich V. L., Ovchinnikov B. N. The Heat Transfer Characteristics Improvement ofthe Axial Groove Heat Pipes. Preprint of 8th International Heat Pipes Conference, September 14—18, 1992, Beijing, China, 17-1—17-5 (Beijing, 1992).
27. Barantsevich V. L., Veretennikov B. N., Opryshko S. I., et al. Sintering of Silicon Doped Aluminum Fibers. Powder Metallurgy, No. 221, 27—29 (1981).
28. Baturkin V., Bondar L., Shcoda K. Thermal Regimes Simulation of Ramified Heat Pipes Communication by Finite Element Method. Proc. 25th International Conference on Environmental Systems, July 10—13, 1995, San-Diego, California, USA, 5 p. (SAE Technical Series N 951553) (San-Diego, 1995).
29. Baturkin V., Olefirenko D. Research on Axially Grooved Heat Pipe Heat Transfer Characteristics in Ground Tests. Proc. 31st International Conference on Environmental Systems, SAE, July 9—12, 2001, Orlando, USA, 5 p. (Report 2001-01-2237) (Orlando, 2001).
30. Baturkin V., Zhuk S., Olefirenko D., et al. Thermal qualification tests of longitudinal ammonia heat pipes for using in thermal control systems of small satellites. Heat Pipes, Heat Pumps, Refrigerators: Proc. IV Minsk International Seminar, September 4—7, 2000, Heat and Mass Transfer Institute, Minsk, Belarus, 261—269 (Minsk, 2000).
31. Bertossi R., Bertin Y., Ayel V., et al. Modelling of the Transfer in Micro-Region in Axially Grooved Heat Pipes. Heat Pipes, Heat Pumps, Refrigerators: Proc. VII Minsk International Seminar, September 8—11, 2008, Heat and Mass Transfer Institute, Minsk, Belarus, 44—51 (Minsk, 2008).
32. Borodkin A. A., Pustyakov Y. I., Portnov V. D., et al. Mathematical Simulation of Liquid Condensation Process in Heat Pipes with Axial Grooves. Proc. 7th the International Heat Pipe Conference, May 21—25, 1990, Minsk, 7 p. (Minsk, 1990).
33. Brandt C., Stephan P., Dubois M., et al. Theoretical Investigation of Advanced Capillary Structures in Grooved Heat Pipe Evaporators for Space Applications. Proceedings of 30th International Conference on Environmental Systems, July 10—13, 2000, Toulouse, France, 7 p. (SAE report 2000-01-2319) (Toulouse, 2000).
34. Brennan P., Kroliczek E. Heat Pipe Design Handbook. B&K Engineering, Inc, USA, Contract NAS5-23406, 370 p. (1979).
35. Dubois M., Van Oost S., Bekaert G., et al. High Capacity Grooved Heat Pipes. Proceedings of the 4th European Symposium on Space Environmental Control Systems, 1991, Florence, Italy, 575— 581 (Florence, 1991).
36. Dubois M., Van Oost S., Mullender B. High Capacity Grooved Heat Pipe.  Proceedings of the 23d International Conference on Environmental Systems, SAE, July 12—15, 1993, Colorado Springs, USA, 6 p. (SAE Technical Series 932303) (Colorado Springs, 1993).
37. Dvirniy V. V., Testoedov N. A. Development, Tryout and Manufacture of the Heat Pipes for the Communication, Navigation and Geodesic Satellites. Heat Pipes, Heat Pumps, Refrigerators: Proc. VII Minsk International Seminar, September 8—11, 2008, Heat and Mass Transfer Institute, Minsk, Belarus, 94—103 (Minsk, 2008).
38. ESATAN User Manual. ALSTOM Power Technology Centre, Whetstone, Leicester, UK, UM-ESATAN-004, ESATAN 8.9, 4-13 — 4-33 (April 2003).
39. Furukawa M. Practical Expressions for Thermodynamic and Transport Properties of Commonly Used Fluids. J. Thermophys. and Heat Transfer, 5 (4), 524—531 (1991).
40. High Performance Grooved Heat Pipes. Final Report HGP-RP-SA-022-92, S.A.B.C.A, 56 p. (Belgue, 1992).
41. Hoa C., Demolder B., Alexandre A. Roadmap for Developing Heat Pipes for ALCATEL Space’s Satellites. Proc. 12th International Heat Pipe Conference, May 19— 24, 2002, Moscow, Russia, Report C1, 235—240 (Moscow, 2002).
42. Kobayashi Y., Ikeda S., Iwasa M. Evaporative Heat Transfer at the Evaporative Section of a Grooved Heat Pipe. J. Thermophys. and Heat Transfer, 10 (1), 83—89 (1996).
43. Ma H. B., Peterson G. P. Temperature Variation and Heat Transfer in Triangular Grooves with an Evaporating Film. J. Thermophys. and Heat Transfer, 11 (1), 90—97 (1997).
44. Nguyen T. M., Brennan P. J. Development and Applications of the Groove Analysis Program (GAP). Proc. 25th International Conference on Environmental Systems, SAE, July 10—13, 1995, San Diego, California, USA, 12 p. (SAE Technical Series 951554) (San Diego, 1995).
45. Pietsch C., Hauser J. Development and testing of a high performance quadro-groove heat pipe. Proc. 21th International Conference on Environmental Systems, SAE, July 15—18, 1991, San Francisco, California, 6 p. (SAE Paper Number Series 911481) (San Francisco, 1991).
46. Potash M., Wayner P. C. Jr. Evaporation from a Two-Dimensional Extended Meniscus. Int. J. Heat and Mass Transfer, 25, 1851—1863 (1972).
47. Rassamakin B. M., Kharnasov S. M., Zaripov V. K., et al. Aluminium Profiled Heat Pipes and Honeycomb Panels; Experiments and Simulation. Preprint of the 14th International Heat Pipes Conference, Section 12, April 22—27, 2007, Florianopolis, Brazil, 7 p. (CEP 88058-700) (Florianopolis, 2007).
48. Richter R. F. G., Brennan P. J., Rankin J. G. Development of an Advanced Trapezoidal Axially Grooved (ATAG) Heat Pipe. Proc. 4th Joint Thermophysics and Heat Transfer Conference, paper N 86-1342, 7 p. (AIAA, 1986).
49. Schlitt R. Influence of Ammonia Fill Rates on the Performance of Axially Grooved Heat Pipes, 152 p. (Technical report ANTD3 N 148/81) (ERNO Raumfahrttechnik GmbH, Germany, 1981).
50. Schlitt R. Performance Characteristics of Recently Developed High Performance Heat Pipe. Proc. 8th International Heat Pipe Conference, September 14—18, 1992, Beijing, China, 1—8 (Beijing, 1992).
51. Schlitt R. Performance Characteristics of High-Performance Heat Pipes. Heat Transfer Engineering, 16 (1), 44—52 (1995).
52. Shekriladze I. G. Evaporation and Condensation on Capillary Surfaces, Achievements and Unsolved Problems. Proc. 10th International Heat Pipe Conference, September 21—25, 1997, Stuttgart, Germany, 6 p. (Stuttgart, 1997).
53. Smirnov H. F., Goncharov K. A., Kochetkov A. Yu., et al. Two-Phase Thermal ControlSystems Investigations in Odessa State Academy of Refrigeration (OSAR) commonly with Lavochkin Association before 2000 and outside OSAR in the Next Years. Proceedings of the VII Minsk International Seminar, Minsk, Belarus, September 8—11, 2008, 161—177 (Minsk, 2008).
54. Smirnov-Vasiljev K. G., Dvirny V. V. An Experimental Investigation on Long Aluminium Grooved Heat Pipe for HoneyComb Sandwich Plates Satellites and its Application in the Absorbtion Fridge. Proc. 9th International Heat Pipe Conference, May 1—5, 1995, Albuquerque, USA, Vol. 2, 717—722 (LA-UR-97-1500) (Albuquerque, 1995).
55. Spacecraft Thermal Control Design Data. ESA Procedures Standards and Specifications PSS-03-108: In 9 vol. Vol. 5, 121 p. (European Space Agency, 1989).
56.  Spacecraft Thermal Control Handbook: 2 ed., Vol. 1, 489—522 (The Aerospace Press, El Segundo, California; American Institute of Aeronautics and Astronautics, Inc, Reston, Virginia, 2002).
57. Stephan P. Microscale Heat and Mass Transfer Phenomena and their Influence on Macroscopic Evaporator Performance. Proc. 9th International Heat Pipe Conference, May 1—5, 1995, Albuquerque, USA, Vol. 1, 8—17 (LA-UR-97-1500) (Albuquerque, 1995).
58. Stephan P. C., Busse C. A. Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls. Int. J. Heat and Mass Transfer, 30 (2), 383—391 (1992).
59. Tarasov G. V., Rassamakin B. M. Creation and Application in Design of Space Satellites High-Effective Aluminium Heat Pipes. Proc. 4th Ukraine-Russia-China Symposium of Space Science and Technology. September 12—17, 1996, NKAU, Kyiv, Ukraine, 213—215 (Kyiv, 1996).
60. TAS — Thermal Analysis System. User’s manual, Harvard Thermal Inc., USA, Document HTTAS, 413 p. (2003).
61. Vasiliev L. L., Khrustalev D. K., Kulakov A. G. High-Efficient Condenser with Porous Element. Proc. 21st Conference on Environmental Systems, July 15— 18, 1991, San Francisco, California, 6 p. (SAE Technical Paper Series N 911524) (San Francisco, 1991).
62. Vasiliev L., Lapotko D., Lukianova E., et al. Two-Phase Heat Transfer Enhancement in Micro Channels and Heat Pipe Evaporators with Nano Porous Structures. Preprint of the 14th International Heat Pipes Conference, Section 5, April 22—27, 2007, Florianopolis, Brazil, 6 p. (CEP 88058-700) (Florianopolis, 2007).
63. Vasiliev L., Zhuravlyov A., Shapovalov A., et al. Vaporization Heat Transfer in Porous Wicks of Evaporators. Archi. Thermodynamics, 25 (3), 47—59 (2004).

64. Xu X., Carey V. P. Film Evaporation from a Micro-Grooved Surface — An Approximate Heat Transfer Model and Its Comparison with Experimental Data. J. Thermophys. and Heat Transfer, 4 (4), 512—520 (1990).