Ceramic fuel cells for space vehicles

1Lugovy, MI, 2Slyunyayev, VM, 2Brodnikovskyi, Ye.M, 2Brychevskyi, M, 2Brodnikovskyi, MP, 2Vasil'ev, AD, 3Steinberger-Wilckens, R
1Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv
2Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Research Center Yulich,Yulich, Germany
Kosm. nauka tehnol. 2009, 15 ;(2):05-15
https://doi.org/10.15407/knit2009.02.005
Publication Language: Ukrainian
Abstract: 
The technological aspects of manufacturing planar solid oxide fuel cells (SOFC) with bearing anode on the basis of high conductive scandia-stabilized zirconia are considered. The results of our investigation of electron beam deposited scandia-stabilized zirconia-based electrolyte microcracking are presented. The topicality of such investigation is associated with the fact that electrolyte integrity is the prerequisite to reliability of SOFCs and their application in space vehicles. We discuss the mechanisms of SOFC component degradation via the decrease of their grain boundaries which is induced by impurity under operating conditions.
Keywords: electrolyte, electron beam, microcracking
References: 
1. Movchan B. A., Malashenko I. S. Vacuum deposited heat-resistant coatings, 230 p. (Naukova Dumka, Kiev, 1983) [in Russian].
2. Poletika I. M. Intergranular adsorption of impurities and destruction of metals, 126 p. (Nauka, Novosibirsk, 1988) [in Russian].
3. Salganik R. L. Mechanics of bodies with many cracks. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No. 4, 149–158 (1973) [in Russian].
4. Slyunyayev V. M., Lugovy M. I., Firstov S. A. Grain boundary segregation in a binary alloy upon heat treatment: non-monotonous temperature dependence and effect on intergranular brittleness. Metallofiz. Noveishie Tekhnol., 29 (4), 451– 469 (2007) [in Russian].
5. Ustinovshchikov Yu. I., Bannykh O. A. The Nature of Temper Embrittlement of Steel, 240 p. (Nauka, Moscow, 1984) [in Russian].
6. Utevsky L. M., Glikman Ye. E., Kark G. S. Reversible temper brittleness of steels and iron alloys, 224 p. (Metallurgiya, Moscow, 1987).
7. Atkinson A. Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes // Solid State Ionics. — 1997. — 95. — P. 249–258.
8. Atkinson A., Selcuk A. Mechanical behavior of ceramic oxygen ion-conducting membranes. Solid State Ionics, 134, 59–66 (2000).
9. Brockenbrough J. R., Zok F. W. On the role of particle cracking in flow and fracture of metal matrix composites. Acta Metall. Mater., 43 (1), 11–20 (1995).
10. Chevalier J., Olagnon C., Fantozzi G. et al. Creep behaviour of alumina, zirconia and zirconia-toughened alumina. J. Eur. Ceram. Soc., 17 (6), 859– 864 (1997).
11. Fischer W., Malzbender J., Blass G. et al. Residual stresses in planar solid oxide fuel cells. J. Power Sources, 150, 73–77 (2005).
12. Ghosh S., Moorthy S. Particle fracture simulation in non-uniform microstructures of metal-matrix composites. Acta Mater., 46 (3), 965–982 (1998).
13. Gogotsi G., Lugovy M. Local stochastic analysis of microc-racking and non-elastic behavior of ceramics. Theor. Appl. Fract. Mec., 36, 115–123 (2001).
14. Guo X. Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layers. Solid State Ionics, 81, 235–242 (1995).
15. Huijsmans J. P. P., Van Berkel F. P. F., Christie G. M. Intermediate temperature SOFC — a promise for the 21st century. J. Power Sources, 71, 107–110 (1998).
16. Hwang S.-L., Chen I-W. Grain size control of tetragonal zirconia polycrystals using the space charge concept. J. Amer. Ceram. Soc., 73 (11), 3269–3277 (1990).
17. Kiser M. T., Zok F. W., Wilkinson D. S. Plastic flow and fracture of particulate metal matrix composite. Acta Mater., 44 (9), 3465–3476 (1996).
18. Kouzeli M., Weber L., San Marchi C. et al. Influence of damage on the tensile behaviour of pure aluminium reinforced with ≥40 vol. pct alumina particles. Acta Mater., 49, 3699–3709 (2001).
19. Lemaitre J. A course on damage mechanics. (Springer-Verlag, Berlin, 1992).
20. Liu C.-K., Chen T.-T., Chyou Y.-P. et al. Thermal stress analysis of a planar SOFC stack. J. Power Sources, 164, 238–251 (2007).
21. Lugovy M., Orlovskaya N., Berroth K. et al. Microstructural engineering of ceramic-matrix layered composites: Effect of grain size dispersion on single-phase ceramic strength. Comp. Sci. Technol., 59 (2), 283–289 (1999).
22. Lugovy M., Podrezov Y., Slyunyaev V. et al. Fracture resistance and strength of two-phase WC-Ni alloy. Theor. Appl. Fract. Mec., 31, 85–90 (1999).
https://doi.org/10.1016/S0167-8442(99)00002-6
23. Lugovy M., Slyunyayev V., Orlovskaya N. et al. Apparent fracture toughness in Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Mater., 53, 289–296 (2005).
https://doi.org/10.1016/j.actamat.2004.09.022
24. Lugovy M., Slyunyayev V., Subbotin V. et al. Crack arrest in Si3N4-based layered composites with residual stress. Comp. Sci. Technol., 64 (13–14), 1947– 1957 (2004).
https://doi.org/10.1016/j.compscitech.2004.02.007
25. Lugovy M., Slyunyayev V., Texeira V. Residual stress relaxation processes in thermal barrier coatings under tension at high temperature. Surf. Coat. Technol., 184 (2–3), 331–337 (2004).
https://doi.org/10.1016/j.surfcoat.2003.09.068
26. Nan C.-W., Clarke D. R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater., 44 (9), 3801–3811 (1996).
https://doi.org/10.1016/1359-6454(96)00008-0
27. Podrezov Y., Lugovoy N., Slyunyaev V. et al. Statistical failure model of materials with micro-inhomogeneity. Theor. Appl. Fract. Mec., 26, 35–40 (1997).
https://doi.org/10.1016/S0167-8442(96)00032-8
28. Ralph J. M., Schoeler A. C., Krumpelt M. Materials for lower temperature solid oxide fuel cells. J. Mater. Sci., 36, 1161–1172 (2001).
https://doi.org/10.1023/A:1004881825710
29. Seah M. P. Grain boundary segregation. J. Phys. F: Metal Phys., 10, 1043–1064 (1980).
https://doi.org/10.1088/0305-4608/10/6/006
30. Selimovich A., Kemm M., Torrison T., et al. Steady state and transient thermal stress analysis in planar solid oxide fuel cells. J. Power Sources, 145, 463– 469 (2005).
https://doi.org/10.1016/j.jpowsour.2004.11.073
31. Shao S., Fan Z., Shao J. et al. Evolutions of residual stress and microstructure in ZrO2 thin films deposited at different temperatures and rates. Thin Solid Films, 445, 59–62 (2003).
https://doi.org/10.1016/j.tsf.2003.08.051
32. Singhal S. C. Review: Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 152–153, 405–410 (2002).
https://doi.org/10.1016/S0167-2738(02)00349-1
33. Tsoga A., Nikolopoulos P. Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J. Mater. Sci., 31 (20), 5409–5413 (1996).
https://doi.org/10.1007/BF01159310
34. Will J., Mitterdorfer A., Kleinlogel C. et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics, 131, 79–96 (2000).
https://doi.org/10.1016/S0167-2738(00)00624-X
35. Yakabe H., Baba Y., Sakurai T., et al. Evaluation of the residual stress for anode-supported SOFC. J. Power Sources, 135, 9–16 (2004).
https://doi.org/10.1016/j.jpowsour.2003.11.049
36. Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta, 45, 2423–2435 (2000).