Investigation of the five-minute Solar brightness oscillations: DIFOS-F experiment
Heading:
1Stodilka, MI 1Astronomical Observatory of the Ivan Franko National University of L’viv, L'viv, Ukraine |
Kosm. nauka tehnol. 2005, 11 ;(1-2):030-036 |
https://doi.org/10.15407/knit2005.01.030 |
Publication Language: Ukrainian |
Abstract: Using observational data on solar continuous radiatior flows in six spectral regions, wc solved radiation transfer problem and reproduced global temperature oscillations in the low photosphere of tlic Sun. The accuracy of the reproduction of oscillations by DIFOS data is two or three times higher than that by SOIIO data. It is shown that five-minute oscillations of the solar brightness arc generated by global standing waves and one of their knots lies at the beginning of the overshooting convection region
|
References:
1. Kostik R. I., Osipov S. N., Lebedev N. I. The first results of the DIFOS-F experiment. Kosm. nauka tehnol., 9 (2-3), 10—12 (2003) [in Ukrainian].
2. Landau L. D., Lifshits E. M. Continuum Mechanics, 788 p. (Gostekhizdat, Moscow, 1953) [in Russian].
3. Stodilka M. I. The Inverse Problem for a Study of Solar and Stellar Atmosphere Inhomogeneities. Zhurn. fiz. doslidzhen' [Journal of Physical Studies], 6 (4), 435—442 (2002) [in Ukrainian].
4. Stodilka M. I. The Application of Inverse Methods for the Investigation of Solar Brightness Oscillations. Zhurn. fiz. doslidzhen' [Journal of Physical Studies], 8 (2), 192—198 (2004) [in Ukrainian].
5. Stodilka M. I. Temperature structure of a real solar granulation. Kinematika Fiz. Nebesn. Tel, 19 (5), 407—416 (2003) [in Ukrainian].
6. Espagnet O., Muller R., Roudier T., et al. Spatial relation between the 5-minute oscillations and granulation patterns. Astron. and Astrophys., 313 (1), 297—305 (1996).
7. Fro'hlich C., Bonnert R. M., Bruns A. V., et al. IPHIR: The helioseismology experiment on the PHOBOS mission. In: Seismology of the Sun and Sun-like stars: ESA SP-286, 359—362 (1988).
8. Hasler K.-H., Zhugzhda Y. D., Lebedev N. L., et al. Observation of solar low-l p-modes by the CORONAS-DIFOS experiment. Astron. and Astrophys., 322, L41—L44 (1997).
9. Hoekzema N. M., Rutten R. J. Small scale topology of solar atmosphere dynamics. II. Granulation, K2v qrains and waves. Astron. and Astrophys., 329 (2), 725—734 (1998).
10. Khomenko E. V., Kostik R. I., Shchukina N. G. Five-minute oscillations above granules and intergranular lanes. Astron. and Astrophys., 369, 660—671 (2001).
https://doi.org/10.1051/0004-6361:20010129
https://doi.org/10.1051/0004-6361:20010129
11. Kiefer M., Stix M., Balthasar H. Wave modulation and wave sources in the solar convection zone. Astron. and Astrophys., 359, 1175—1184 (2000).
12. Lebedev N. I., Oraevsky V. N., Zhugzhda Y. D., et al. First results of the CORONAS-DIFOS experiment. Space observations of solar irradiance oscillations. Astron. and Astrophys., 296, L25—L28 (1995).
13. Robinson F. J., Demarque P., Li L. H., et al. Three-dimensional convection simulations of the outer layers of the Sun using realistic physics. Mon. Notic. Roy. Astron. Soc., 340 (3), 923—936 (2003).
https://doi.org/10.1046/j.1365-8711.2003.06349.x
https://doi.org/10.1046/j.1365-8711.2003.06349.x
14. Rutten R. J., Krijger J. M. Dynamics of the solar chromosphere. IV. Evidence for atmospheric gravity waves from TRACE. Astron. and Astrophys., 407 (2), 735—740 (2003).
https://doi.org/10.1051/0004-6361:20030894
https://doi.org/10.1051/0004-6361:20030894
15. Woodard M., Hudson H. Solar oscillations observed in the total irradiance. Solar Phys., 82 (1), 67—73 (1983).
https://doi.org/10.1007/BF00145546
https://doi.org/10.1007/BF00145546
16. Zhugzhda Y. D. Waves and shear flows. Astron. and Astrophys. Transactions, 22 (4-5), 593—606 (2003).
https://doi.org/10.1080/1055679031000124457
https://doi.org/10.1080/1055679031000124457
17. Zhugzhda Y. D., Stix M. Acoustic waves in structured media and helioseismology. Astron. and Astrophys., 291 (1), 310—319 (1994).