Dozed biophysical influences stabilize the bone remodeling markers after unloaded induced osteopenia

1Berezovskii, VA, 1Litovka, IG, 1Kostyuchenko, AS
1Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(1-2):093-097
https://doi.org/10.15407/knit2005.01.093
Publication Language: Ukrainian
Abstract: 
The 28-day hind limb unloading for 56 young rat-males causes negative changes of physiological and biochemical markers of the bone remodeling, like in microgravitation and hypokinesia conditions. A dozed oxygen deprivation influence in modes of 10/10 and 10/20-min eliminates completely the negative shifts in the glyeo-saminoglican concentrations, normalizes the activity of the alkaline phosphatase, acid phosphatase, tartratresistant acid phosphatase and other markers of the bone remodeling. Periodic inhalation of gas mixture with oxygen reduced to 10 "/„ can either partially or totally compensate the oppression of bone remodeling for persons with sedentary life and insufficient volume of physical load.
References: 
1. Berezovskaya O. P., Litovka I. G. Osteogenesis in conditions of hypokinesia and hypoxia. In: Problems of Ecological and Medical Genetics and Clinical Immunology: Collection of scientific works, Is. 6 (45), 19—31 (Kyiv, Luhansk, Kharkiv, 2002) [in Russian].
2. Berezovsky V. A., Deynega V. G. Physiological mechanisms of sanogenic effects of mountain climate, 224 p. (Nauk. dumka, Kiev, 1988) [in Russian].
3. Berezovs'kyi V. Ia.,·Lakhin P. V., Litovka I. H., et al. The modeling of experimental osteopenia in rats and development of prophylaxis technology. Fiziol. Zh., 50 (5), 88—91 (2004) [in Ukrainian].
4. Volozhin A. I., Lemetskaya T. I. Changes in calcium and phosphorus metabolism in bones and teeth with oxygen starvation. Patol. fiziologija i jeksperim. med., 14 (5), 16—20 (1970) [in Russian].
5. Grigoriev A. I., Larina I. M. Principles of the organization of calcium metabolism. Uspehi fiziol. nauk, 23 (3), 24—52 (1992) [in Russian].
6. Klyatskin S. A., Lifshits P. I. Analysis of Glycosaminoglycans in the Blood of Patients by the Orcinol Method. Lab. delo, No. 9, 51—53 (1989) [in Russian].
7. Korzhuyev P. A. Evolution, gravitation, weightlessness, 152 p. (Nauka, Moscow, 1971) [in Russian].
8. Leontiev V. K., Petrovich Yu. A. Biochemical methods in clinical and experimental dentistry, 93 p. (Omsk, 1976) [in Russian].
9. Litovka I. G. Dosed hypoxia correction effect on the weightlessness osteopenia. Kosm. nauka tehnol., 8 (4), 81—85 (2002) [in Russian].
10. Litovka I. G., Berezovska O. P. The oxygen deprivation as the osteogenesis initiator under the hypokinesia. Fiziol. zhurn., 49 (2), 58—65 (2003) [in Ukrainian].
11. Litovka I. G. The remodelling of bone tissue for low- and high-activity rats under a 45-day hypokinesy and the influence of measured oxygen deprivation. Kosm. nauka tehnol., 9 (1), 92—95 (2003) [in Ukrainian].
12. Litovka I. G. Remodeling of bone tissue of rats at hypokinesia of different durations. Ukrai'ns'kyj medychnyj al'manah, 6 (2), 171—174 (2003) [in Ukrainian].
13. Manukhina E. B., Mashina S. Yu., Vlasova M. A., et al. Role of free NO and NO stores in adaptation to hypoxia of the cardiovascular system. Regionarnoe krovoobrashhenie i mikrocirkuljacija, 3 (11) 4—11 (2004) [in Russian].
14. Oganov V. S. Hipokinesia - the factor of risk of osteoporosis. Osteoporoz i osteopatija, No. 1, 13—17 (1998) [in Russian].
15. Oganov V. S., Grigoriev A. I., Voronin L. I., et al. Bone mineral density in cosmonauts after flights lasting 4.5–6 months on the Mir orbital station. Aviakosm. Ekolog. Med., No. 5–6, 20—24 (1992) [in Russian].
16. Sharaev P. N., Strelkov N. S., Gunchev V. V., Sosulina L. L. Measurement of hyaluronidase activity in biological fluids. Klinicheskaya Laboratornaya Diagnostika, No. 3, 21—22 (1996) [in Russian].
17. Fukuoka P., Nishimura Y., Haruna M., Suzuki Y. Effect of bed rest immobilization on metabolic turnover of bone mineral density. Gravit. Physiol., 4 (1), S 75—S 81 (1997).
18. Kostyuk P. G. Calcium ions in nerve cell function, 220 p. (Oxford Univ. Press, New York, 1992).
19. Morey-Holton E. R., Arnaud S. B. Skeletal responces to spaceflight. Adv. Space Biology and Medicine, 1 (1), 37—69 (1991).
https://doi.org/10.1016/S1569-2574(08)60120-3
20. Premkumar D. R. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv. Exp. Med. Biol., No. 475, 101 — 109 (2000).
21. Semenza G. HLF-1: medialor of physiological and pathophysiological responses to hypoxia. Cell, 88 (4), 1474-1480 (2000).
22. Van’t Hof R. J., MacPhee J., Libouban H., et al. Regulation of bone mass and hone turnover by neuronal nitric oxide synthase. Endocrinology, 145 (11), 5068—5074 (2004).
https://doi.org/10.1210/en.2004-0205
23. Wykoff C. C., Pugh C. W., Maxwell P. H., Harris A. L. Identification of novel hypoxia dependent target genes of the von Hippel-Lindau (VHL) tumor suppressor by m RNA differential expression prolifing. Oncogene, No. 19, 6297—6307 (2000).
https://doi.org/10.1038/sj.onc.1204012