High-frequency langmuir wave instability in preflare plasma

1Kryshtal, AN, 2Gerasimenko, SV
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(1-2):068-074
https://doi.org/10.15407/knit2005.01.068
Publication Language: Russian
Abstract: 
The conditions of rise of high-frequency electron plasma waves due to the appearance and development of the corresponding Langmuir Instability were investigated at the chromospheric part of the loop current circuit in arcade before a flare. The rise of this instability is the resull of the collective action of the effects connected with taking into account the pair Coulomb collisions in the form of the model integral of Bhatnagar – Gross – Crook for the fully ionized plasma, the presence of quasi static large-scale electric Field in the current circuit and adiabatically slow growth of the amplitude of this field in time. The growth is the result of the magnetic flux interaction in the framework of the Heyvaerts – Priest – Rust theory of a flare, It is shown that the langmuir instability can rise only at the early stage of the flux Interaction, when the electron-ion collisions dominate in plasma. When the anomalous resistance appears at the chromospheric part of current circuit due 1o the rise of the saturated Ion-acoustic turbulence, the development of the Langmuir wave instability becomes impossible in the framework of stationary scenario.
References: 
1. Aleksandrov A. F., Bogdankevich L. S., Rukhadze A. A. Principles of Plasma Electrodynamics, 424 p. (Vysshaya Shkola, Moscow, 1989) [in Russian].
2. Alikaeva K. V., Baranovskij E. A., Kondrashova N. N., et al. Semiempirical photospheric models of the solar activity complex. Kinematika Fiz. Nebesn. Tel, 11 (2), 11—24 (1995) [in Russian].
3. Galeev A. A., Sagdeev R. Z. Nonlinear Plasma Theory. In: Voprosy teorii plazmy, Is. 7, 3—145 (Gosatomizdat, Moscow, 1973) [in Russian].
4. Goossens M. Cosmic Magnetic Hydrodynamics, Ed. by E. Prist, A. Khud, Transl. from Eng., 484 p. (Mir, Moscow, 1995) [in Russian].
5. Zaitsev V. V., Stepanov A. V., Tsap Yu. T. On the problems of physics of solar and stellar flares. Kinematika i Fizika Nebesnykh Tel, 10 (6), 3—31 (1994) [in Russian].
6. Kopylova Yu. G., Stepanov A. V., Tsap Yu. T. Radial Oscillations of Coronal Loops and Microwave Radiation from Solar Flares. Pis'ma v Astron. zhurn., 28 (11), 870—879 (2002) [in Russian].
7. Kryshtal A. N. Low-Frequency Wave Instabilities in Magnetized Collisional Plasma with Longitudinal Electric Field and Weak Inhomogeneity of Density. Radio Physics and Radio Astronomy, 8 (1), 5—20 (2003) [in Russian].
8. Kryshtal' A. N., Gerasimenko S. V. Dispersion of the waves in magnitoactive plasma with sub-Dreicer electric field and strong density inhomogeneity in arch structures. Kinematika i Fizika Nebesnykh Tel, 18 (3), 258—272 (2002) [in Russian].
9. Kryshtal’ A. N., Gerasimenko S. V. Generation of Low-Frequency Waves in the Plasma of Postflare Loops in the Presence of Strong Temperature Inhomogeneity. Izv. Krym. Astrofiz. Observ., 99, 119—131 (2003) [in Russian].
10. Kryshtal A. N., Gerasimenko S. V. Magnetoacoustic wave generation in preflare plasma of solar active regions. Bulletin of Kyiv University. Ser. Astronomy, No. 41-42, 19—28 (2004) [in Ukrainian].
11. Krishtal’ A. N., Yukhitnuk A. K. On the influence of longitudinal electric fields on plasma instabilities in solar magnetic traps. Kinematika i Fizika Nebesnykh Tel, 7 (2), 23—32 (1991) [in Russian].
12. Krall N. A., Trivelpiece A. W. Principles of plasma physics, 526 p. (Mir, Moscow, 1975) [in Russian].
13. Somov B. V., Titov V. S., Vernetta A. I. Magnetic reconnection in solar flares. In: Itogi nauki i tehniki, VINITI, Astronomy, 34, 136—237 (1987) [in Russian].
14. Terekhov O. V., Shevchenko A. V., Kuz'min A. G., et al. Observation of Quasi-Periodic Pulsations in the Solar Flare SF 900610. Pis'ma v Astron. zhurn., 28 (9), 452—456 (2002) [in Russian].
15. Fleishman G. D., Charikov Y. E. Nonlinear saturation of an electron-cyclotron maser. Astron. zhurn., 68 (4), 719—731 (1991) [in Russian].
16. Chen F. F. Introduction to Plasma Physics, 398 p. (Mir, Moscow, 1987) [in Russian].
17. Aschwanden M. I. An evaluation of coronal healing models for active regions based on Yohkoh, SOHO and TRACE observations. Astrophys. J., 560 (2), 1035—1043 (2001).
https://doi.org/10.1086/323064
18. Brinca A. L., Dysthe K. B. Effect of longitudinal electric fields on electrostatic electron cyclotron waves. J. Plasma Phys., 29, pt. 1, 35—40 (1983).
https://doi.org/10.1017/S0022377800000556
19. Heywaerts J., Priest E., Rust D. An emerging flux model for the solar flare phenomenon. Astrophys. J., 216 (1), 213—221 (1977).
20. Kryshtal A. N. Bernstein wave instability in a collisional plasma with a quasistatic electric field. J. Plasma Phys., 60, pt. 3, 469—484 (1998).
21. Kryshtal A. N. Low-frequency wave instabilities in a plasma with a quasi-static electric field and weak spatial inhomogeneity. J. Plasma Phys., 68, pt. 2, 137—148 (2002).
https://doi.org/10.1017/S0022377898007004
22. Kryshtal A. N., Gerasimenko S. V. Slow magnetoacoustic-like waves in post-flare loops. Astron. and Astrophys., 420, 1107—1115 (2004).
https://doi.org/10.1051/0004-6361:20040119
23. Kryshtal A. N., Kucherenko V. P. A possible excitation mechanism for a longitudinal wave instability in a plasma by a quasi-static electric field. J. Plasma Phys., 53, pt. 2, 169-184 (1995).
https://doi.org/10.1017/S0022377800018109
24. Kryshtal A. N., Kucherenko V. P. Ion-acoustic instability caused by large-scale electric field in solar active regions. Solar Phys., 165 (1), 139—153 (1996).
https://doi.org/10.1007/BF00149094
25. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiempirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
https://doi.org/10.1086/158467
26. Miller J. A., Cargill P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102 (A7), 14631 — 14659 (1997).
https://doi.org/10.1029/97JA00976
27. Nakariakov V. M., Tsiklauri D. Wide-spectrum slow magnetoacoustic waves in coronal loops. Astron. and Astrophys., 379, 1106—1112 (2001).
https://doi.org/10.1051/0004-6361:20011378
28. Pines D., Schrieffer R. Collective behaviour in solid-state plasmas. Phys. Rev., 124 (5), 1387—1400 (1961).
https://doi.org/10.1103/PhysRev.124.1387
29. Poletto G., Kopp R. A. Macroscopic electric fields during two-ribbon flares. In: Niedeg D. (Ed.) The lower atmosphere of solar flares, 50, 453—465 (Sacramento Peak, NM, 1986).
30. Somov B. V. Fundamentals of Cosmic Electrodynamics, 364 p. (Kluwer Acad. Publ., Dordrecht. 1994).
https://doi.org/10.1007/978-94-011-1184-3
31. Vernazza J. K., Avrett E. H., Looser R. Structure of the solar chromosphere. III — Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser., 45 (1), 635—725 (1981).
https://doi.org/10.1086/190731
32. Yukhimuk A., Fedun V., Sirenko O., Voitenko Yu. Excitation of Fast and Slow Magnetosonic Waves by Kinetic Alfven Waves. In: AIP Conf. proc., Waves in Dusty, Solar and Space Plasmas: Proc. Conf.; Leuven, Belgium, 22—26 May, 2000, 537, 311—317 (2000).