Influence of the real and simulated microgravity on gene expression of heat-shock proteins
Heading:
1Kozeko, LYe. 1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2007, 13 ;(2):057-061 |
https://doi.org/10.15407/knit2007.02.057 |
Publication Language: Russian |
Abstract: The possibility of heat-shock proteins' (HSP) participation in adaptation of living systems to microgravity is considered. The published information on HSP gene expression in cells under real and simulated microgravity is analysed. We suppose the necessity of detailed investigation on this problem.
|
Keywords: gene expression, heat-shock proteins, microgravity |
References:
1. Gazenko O. G., Ilyin E. A., Parfyonov G. P. Biological investigations in space ( results and perspectives). Izvestia AN SSSR. Ser. biol., 4, 461—475, (1974) [in Russian].
2. Kozeko L. Ye. Alterations in a soluble protein pattern and a quantity of stress proteins HSP90 and HSP70 in pea seedlings in response to clinorotation. Biopolym. Cell., 22 (2), 136—142 (2006) [in Russian].
3. Kordyum E. L., Sytnik K. M., Belyavskaya N. A., et al. Modern Problems of Cellular Phytobiology in Outer Space, 293 p. (Nauka, Moscow, 1994) [in Russian].
4. Sytnik K. M., Kordyum E. L., Nedukha O. M., Fomicheva V. M. The plant cell under the changing geophysical factors, 136 p. (Nauk. dumka, Kiev, 1984) [in Russian].
5. Claasen D. E., Spooner B. S. The impact of alterations in gravity on aspects of cell biology. Intl. Rev. Cytol., 156, 301—373 (1994).
https://doi.org/10.1016/S0074-7696(08)62257-3
https://doi.org/10.1016/S0074-7696(08)62257-3
6. Coinu R., Chiaviello A., Covelli B., et al. Modeled gravity alters the cell metabolism «rate» and not the cell metabolism. J. Gravit. Physiol., 12 (1), 255—256 (2005).
7. Cotrupi S., Maier J. The adaptive response of endothelial cells to gravitational unloading. Annu. Int. Gravit. Physiol. Meeting, 6—11 June, 2004, Moscow, Russia: Abstr., 103 (Moscow, 2004).
8. Cotrupi S., Maier J. Is HSP70 upregulation crucial for cellular proliferative response in simulated microgravity? J. Gravit. Physiol., 11 (2), 173—174 (2004).
9. Herranz R., Benguria A., Medina J., et al. Gene expression variations during Drosophila metamorphosis in space. The gene experiment in the Spanish Cervantes mission to the ISS. J. Gravit. Physiol., 12 (1), 253— 254 (2005).
10. Kordyum E. Biology of plant cells in microgravity and under clinostating. Intl. Rev. Cytol., 171, 1—78 (1997).
https://doi.org/10.1016/S0074-7696(08)62585-1
https://doi.org/10.1016/S0074-7696(08)62585-1
11. Kumei Y., Morita S., Nakamura H., et al. Does micro-gravity induce apoptotic signal in rat osteoblasts via cJun-N-terminal kinase? J. Gravit. Physiol., 9 (1), 263—264 (2002).
12. Kumei Y., Shimokawa H., Morita S., et al. Apoptotic and anti-apoptotic signals of rat osteoblasts during spaceflight. ELGRA news, 24, 265 (2005).
13. Leone A., Perrotta C., Maresca B. Plant tolerance to heat stress: current strategies and new emergent insights. In: Sanita di Toppi L., Pawlik-Skowronska B. (Eds) Abiotic stresses in plants, 1—22 (Kluwer, 2003).
https://doi.org/10.1007/978-94-017-0255-3_1
https://doi.org/10.1007/978-94-017-0255-3_1
14. Leshem Y. Y., Kuiper P. J. C., Erdei L., et al. Do Selye's mammalian GAS concept and «co-stress» response exist in plants? In: Csermely P. (Ed.) Stress of life from molecules to man, 199—208 (Annals of the New York Academy of Sciences, 1998).
https://doi.org/10.1111/j.1749-6632.1998.tb08994.x
https://doi.org/10.1111/j.1749-6632.1998.tb08994.x
15. Lewis M., Hughis-Fulford M. Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions. J. Cellular Biochem., 77, 127—134 (2000).
https://doi.org/10.1002/(SICI)1097-4644(20000401)77:1<127::AID-JCB13>3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-4644(20000401)77:1<127::AID-JCB13>3.0.CO;2-0
16. Leys N., Wattiez R., Rosier C., et al. Response of the bacterium Cupriavidus metallidurans CH34 to space flight conditions. In: 36th COSPAR Scientific Assembly, 16-23 July 2006, Beijing, China. Abstr. A-01347 (Beijing, 2006).
17. Liu C, Yu Z.-B., Zhang L.-F., Ni H.-Y. Heat shock protein 70 expression in myocardium is blunted with simulated weightlessness. J. Gravit. Physiol., 7 (2), 149—150 (2000).
18. Mathew A., Morimoto R. A. Role of the heat-shock response in the life and death of proteins. In: Csermely P. (Ed.) Stress of life from molecules to man, 99—111 (Annals of the New York Academy of Sciences, 1998).
https://doi.org/10.1111/j.1749-6632.1998.tb08982.x
https://doi.org/10.1111/j.1749-6632.1998.tb08982.x
19. Merkys A. J. Plant growth under microgravity conditions: Experiments and problems. In: Proc. of the 4th European Symposium on Life Sciences Research in Space, Trieste, Italy, 28 May-1 June, 509—515 (Noordwijk, The Netherlands, 1990).
20. Musgrave M. E., Kuang A., Xiao Y., et al. Gravity-independence of seed-to-seed cycling. Planta, 210, 400—406 (2000).
https://doi.org/10.1007/PL00008148
https://doi.org/10.1007/PL00008148
21. Risin D., Ward N. E., Risin S. A., Pellis N. R. Gene expression in activated human T-cells induced by modeled microgravity. ELGRA news, 24, 289 (2005).
22. Rizzo A. M., Rossi F., Guerra A., et al. Effects of microgravity and hypergravity on early developmental stages of Xenopus laevis. J. Gravit. Physiol., 9 (1), 207—208 (2002).
23. Schnabl H., Hunte C, Schulz M., et al. Effects of fast clinostat treatment and microgravity of Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms. Microgravity Sci. Technol., 9 (4), 275—280 (1996).
24. Sundaresan A., Pellis N. R. Human adaptation genetic response suites: toward new interventions and counter-measures for spaceflight. J. Gravit. Physiol., 12 (1), 229—231 (2005).
25. Taylor W. E., Bhasin Sh., Lalani R., et al. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J. Gravit. Physiol., 9 (2), 61—70 (2002).
26. Vierling E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol., 42, 579—620 (1991).
https://doi.org/10.1146/annurev.pp.42.060191.003051
https://doi.org/10.1146/annurev.pp.42.060191.003051
27. Welsh M. J., Gaestel M. Small heat-shock protein family: Function in health and disease. In: Csermely P. (Ed.) Stress of life from molecules to man, 28—35 (Annals of the New York Academy of Sciences, 1998).
28. Wolf D., Schulz M., Schnabl H. Influence of horizontal clinostat rotation on plant proteins: 1. Effects on ubi-quitinated polypeptides in the stroma and thylakoid membranes of Vicia faba L. chloroplasts. J. Plant Physiol., 141, 304—308 (1993).
https://doi.org/10.1016/S0176-1617(11)81739-6
https://doi.org/10.1016/S0176-1617(11)81739-6
29. Zheng H., Wang H. Proteomic alterations in root tips of Arabidopsis thaliana seedling under altered gravity conditions. In: 36th COSPAR Scientific Assembly, 16-23 July 2006, Beijing, China. Abstr. A-00514 (Beijing, 2006).