The influece of imitated microgravity on the amyloplast structure, the composition and characteristics of potato minituber

1Nedukha, OM, 1Kordyum, EL, 1Schnyukova, EI
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(2):062-068
https://doi.org/10.15407/knit2007.02.062
Publication Language: Ukrainian
Abstract: 
The influence of imitated microgravity (clinorotation, 2 rev/min) of long-term duration on the structural-functional organization of Solatium tuberosum L. (cv Adreta) minituber cells is studied. An essential influence on 45-day minituber size, on the content and composition of starch, on the solubility of starch in water and on the structure of amyloplasts in the storage parenchyma of potato minitubers is detected. The following procedures are used: the model system of potato minitubers in sterial culture, the light microscopy, scanning electron microscopy, and biochemical methods for the study of storage polysaccharides. The appearance of a fraction of «gigantic» amyloplasts in starch-storage parenchyma is observed during horizontal clinorotation of long-term duration. The correlation between the decrease of content amylose and the inhibition of starch solubility in water is detected under long-term clinorotation. Our results point to some changes of the carbohydrate metabolism of potato storage organs under the effect of microgravity imitation.
Keywords: biochemical methods, clinorotation, polysaccharides
References: 
1. Bolotova V., Sakan'jan V. E., Lezinovskaja E., Pastishenkov L. Spectrophotometric method for determining the content of polysaccharides in leaves of Tilia cordata Mill. Rastitel'nye resursy, 37, 109—112 (2001) [in Russian].
2. Goncharik M. N. Physiology of seeds and tubers of potato.  In: Rubin B., Andreenko S. (Eds.) Physiology of agricultural plants, Vol. 12, 18—31 (Mosk. Gos. Univ., Moscow, 1971) (Vols. 1-12; Vol. 12) [in Russian].
3. Gukasyan I. A., Golyanovskaya S. A., Grishunina E. V., et al. Effect of rol transgenes, IAA, and kinetin on starch content and the size of starch granules in tubers of in vitro potato plants. Fiziologija rastenij, 52 (6), 913—918 (2005) [in Russian].
4. Jensen W. Botanical histochemistry. (Mir, Moscow, 1965) [in Russian].
5. Nedukha O. M., Shnyukova Ye. I., Kordyum Ye. L. Influence of clinostraining on activity and localization of phosphorylase in starch-containing cells of mini-tubers Solatium tuberosum L. Reports of the National Academy of Sciences of Ukraine, No. 8, 174—178 (2004) [in Ukrainian].
6. Richter M., Augustat S., Schierbaum F. Selected Methods in starch chemistry, Transl. from Germ., Ed. by N. Kozmina, V. Gruner, 137 p. (Pishhevaja prom-st', Moscow, 1975) [in Russian].
7. Cook M., Croxdale J. G. Ultrastructure of potato tubers formed in microgravity under controlled environment condition. J. Exp. Bot., 54, 2157—2164 (2003).
https://doi.org/10.1093/jxb/erg218
8. Croxdale J., Cook M., Tibbitts T., et al. Structure of potato tubers formed during spaceflight. J. Exp. Bot., 48, 2037—2043 (1997).
https://doi.org/10.1093/jxb/48.12.2037
9. Fernie A., Willmitzer L., Trethewey R. Sucrose to starch: transmission in molecular plant physiology. Trends Plant Sci., 7, 35—41 (2002).
https://doi.org/10.1016/S1360-1385(01)02183-5
10. Gilbert L. N., Gilbert G. A., Sprey S. The methods of carbohydrates chemistry, Ed. A. Khorlin.(Mir, Moscow, 1967).
11. Glaring M. A., Koch C., Bienov A. Genotype-specific spatial distribution of starch molecules in the starch granule: A combined CLSM and SEM approach. Biomacromolecules, 7 (8), 2310—2320 (2006).
https://doi.org/10.1021/bm060216e
12. Hasenstein K. H., Kuznetsov O., Brown C., et al. Composition and physical properties of starch in microgravity grown plants. In: Abstracts of 16th ASGSB 2000 Annual Meeting, October 25—28 2000, Monreal, Canada, 111. (ASGSB-CSA-ELGRA) (Monreal, 2000).
13. Hill W. F., Mortley D., MacKoiak C., et al. Growing root, tuber and nut crops hydroponically for CELLS. Adv. Space Res., 12 (5), 125—131 (1992).
https://doi.org/10.1016/0273-1177(92)90018-S 
14. Hovenkamp-Hermelink J. H. M., Devries J., Adamse P., et al. Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res., 31, 241—246 (1988).
https://doi.org/10.1007/BF02365532 
15. Hung P. V., Maeda N., Morita N. Waxy and high-amylose wheat starches and flours—characteristics, functionality and application. Trends in Food Science and Technology, 17 (8), 448—456 (2006).
https://doi.org/10.1016/j.tifs.2005.12.006 
16. Karam L., Ferrero C, Martino M., et al. Thermal, microstructure; and textural characterization of gelatinized corn cassava and yam starch islands. Int. J. Food Sci. and Technology, 41 (7), 805—812 (2006).
https://doi.org/10.1111/j.1365-2621.2005.01110.x
17. Kordyum E. L., Baranenko V., Nedukha O., Samoylov V. Development of potato minitubers in microgravity. Plant Cell Physiol., 38 (10), 1111 — 1117 (1997).
https://doi.org/10.1093/oxfordjournals.pcp.a029095
18. Kuznetsov O., Brown C. S., Levine H. G., et al. Space-grown plants show modified starch structure. In: COSPAR 2000, Warsaw, 16—28 July, 631 (Warsaw, 2000).
19. Kuznetsov O., Brown C., Levine H., et al. Composition and physical properties of starch in microgravity-grown plants. Adv. Space Res., 28, 651—658 (2001).
https://doi.org/10.1016/S0273-1177(01)00374-X
20. Lawal O., Adebowale K., Oderinde R. Functional properties of amylopectin and amylose fractions isolated from Bambarra groundtnut (Voandzeia subterranean) starch. African. J. Biotechnol., 3, 399—404 (2004).
https://doi.org/10.5897/AJB2004.000-2082 
21. Lloyd J., Springer F., Buleon A., et al. The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition of potato tubers. Planta, 209, 230—238 (1999).
https://doi.org/10.1007/s004250050627 
22. Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol., 43 (7), 718—725 (2002).
https://doi.org/10.1093/pcp/pcf091
23. Nedukha O., Schnyukova E., Leach J. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation. Adv. Space Res., 31, 2245—2251 (2003).
https://doi.org/10.1016/S0273-1177(03)00251-5
24. Shu X. L., Shen S., Bao J., et al. Molecular and biochemical analysis of the gelatinization temperature characteristics of rice (Oryza sativa L.) starch granules. J. Cereal Sci., 44 (1), 40—48 (2006).
https://doi.org/10.1016/j.jcs.2006.03.001
25. Singh N., Inouchi N., Nishinari K. Structural and viscoelas-tic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloids, 20 (6), 923—935 (2006).
https://doi.org/10.1016/j.foodhyd.2005.09.009
26. Smith A., Denyer K., Martin C. The synthesis of starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 67—87 (1997).
https://doi.org/10.1146/annurev.arplant.48.1.67
27. Tester R., Karkalas J., Qi X. Strach structure and digestibility enzyme-substrate relationship. World's Poultry Sci. J., 60, 186—195 (2004).
https://doi.org/10.1079/WPS20040014
28. Tibbits T., Croxdale J. G., Brown C., Wheeler R. Potato tuber formation and starch accumulation in space. Grav. and Space Biology Bull., 10, 28 (1996).

29. Weakley B. A Beginner's handbook in biological electron microscopy, Ed. by V. Poljakov. (Mir, Moscow, 1975).