Tropospheric-ionospheric effects of the 3 october 2005 partial solar eclipse in Kharkiv. 2. Modeling and discussion

1Lyashenko, MV, 2Chernogor, LF
1Institute of Ionosphere of the National Academy of Sciences of Ukraine and Ministry for Education and Sciences of Ukraine, Kharkiv, Ukraine
2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(1):57-64
https://doi.org/10.15407/knit2008.01.057
Publication Language: Russian
Abstract: 
The thermal structure and dynamical processes that occurred in the thermosphere-ionosphere system during the 3 October 2005 partial (24 %) solar eclipse are modeled. The solar eclipse is shown to cause an significant increase in the plasma fluxes in the 340‒410 km altitude range, respectively, a decrease of 5‒15 К in the neutral temperature in the 300‒360 km altitude range, a decrease of 40‒20 % in the energy inputs to the electron gas in the 290‒340 km altitude range, and a decrease of 17‒13 % in the electron heat flow in the same 290‒340 km altitude range. The effects which were observed in the thermosphere-ionosphere system near Kharkiv during the 11 August 1999, 31 May 2003, 3 October 2005, and 29 March 2006 solar eclipses are compared.
Keywords: neutral, plasma fluxes, tropospheric-ionospheric
References: 
1. Akimov L. A., Bogovskii V. K., Grigorenko E. I., et al. Atmospheric–ionospheric effects of the solar eclipse of May 31, 2003, in Kharkov. Geomagnetizm i Aeronomiia, 45 (4), 526—551 (2005) [in Russian].
2. Akimov L. A., Grigorenko E. I., Taran V. I., et al. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, No. 2, 25—63 (2002) [in Russian].
3. Boitman O. N., Kalikhman A. D., Tashchilin A. V. Midlatitude ionosphere during the total solar eclipse of March 9, 1997: 1. Modeling of eclipse effects. Geomagnetizm i Aeronomiia, 39 (6), 45—51 (1999) [in Russian].
https://doi.org/10.1029/1999JA900228
4. Boitman O. N., Kalikhman A. D., Tashchilin A. V. Midlatitude ionosphere during the total solar eclipse of March 9, 1997: 2. Observational data and comparison with the simulation results. Geomagnetizm i Aeronomiia, 39 (6), 52—60 (1999) [in Russian].
https://doi.org/10.1029/1999JA900228
5. Borisov B. B., Egorov D. A., Egorov N. E., et al. A Comprehensive Experimental Study of the Ionospheric Response to the Solar Eclipse of March 9, 1997. Geomagnetizm i Aeronomiia, 40 (3), 94—103 (2000) [in Russian].
6. Brjunelli B. E., Namgaladze A. A. Ionospheric physics, 528 p. (Nauka, Moscow, 1988) [in Russian].
7. Burmaka V. P., Lysenko V. N., Lyashenko M. V., Chernogor L. F. Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv. 1. Observations. Kosm. nauka tehnol., 13 (6), 74—86 (2007) [in Russian].
https://doi.org/10.15407/knit2007.06.074
8. Burmaka V. P., Taran V. I., Chernogor L. F. Results of Studying Wave-Like Disturbances in the Ionosphere Using the Incoherent Scatter Method. Usp. Sovrem. Radioelektron., No. 3, 4—35 (2005) [in Russian].
9. Ginzburg V. L. Propagation of Electromagnetic Waves in Plasma, 564 p. (Nauka, Moscow, 1967) [in Russian].
10. Gokov A. M., Chernogor L. F. Processes in Lower Ionosphere during August 11, 1999 Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 348—360 (2000) [in Russian].
11. Grigorenko E. I., Lyashenko M. V., Chernogor L. F. Effects of the solar eclipse of March 29, 2006, in the ionosphere and atmosphere. Geomagnetizm i Aeronomiia, 48 (3), 350—364 (2008) [in Russian].
https://doi.org/10.1134/S0016793208030092
12. Kolokolov L. E., Legen'ka A. D., Pulinets S. A. Ionospheric effects associated with the solar eclipse on March 18, 1988. Geomagnetizm i Aeronomiia, 33 (1), 49—57 (1993) [in Russian].
13. Kostrov L. S., Chernogor L. F. Processes in Bottomside Ionosphere during August 11, 1999 Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 361—370 (2000) [in Russian].
14. Taran V. I. A study of the natural and artificially disturbed ionosphere by the incoherent scatter method. Geomagnetizm i Aeronomiia, 41 (5), 659—666 (2001) [in Russian].
15. Chernogor L. F. Magnetosphere Electron Precipitation Induced by a Solar Eclipse. Radio Physics and Radio Astronomy, 5 (4), 371–375 (2000) [in Russian].
16. Evans J. W. Theoretical and practical issues to investigate  the ionosphere by means of incoherent scattering of radio waves. Proceedings of the IEEE, 57 (4), 139—177 (1969) [in Russian].
17. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S. Effects of the August 11,1999 total solar eclipse as deduced from total electron content measurements at the GPS network. J. Atmos. Solar-Terr. Phys., 64 (18), 1933—1941 (2002).
https://doi.org/10.1016/S1364-6826(02)00221-3
18. Stubbe P. The F-region during an eclipse — A theoretical study. J. Atmos. Terr. Phys., 32 (6), 1109—1116 (1970).
https://doi.org/10.1016/0021-9169(70)90121-2

19. Schunk R. W., Nagy A. F. Ionospheres: Physics, plasma physics, and chemistry. (Cambridge atmospheric and space science series), 555 p. (Cambridge, 2000).