Influence of melatonin on processes of the bone tissue physiological regeneration of young and adult rats

1Berezovskii, VA, 1Litovka, IG, 1Kostjuchenko, AS, 1Yanko, RV
1Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(3):075-081
Publication Language: Ukrainian
We studied the influence of 28-day administration of exogenous melatonin in a dose of 1 mg/kg on the processes of bone tissue physiological remodeling of 3- and 9-monthly rats-males. It is discovered that an initial concentration of melatonin is higher in adult rats, than in 3-monthly rats. We showed a significant increase of 50 % and 25.6 % in serum melatonin concentration for youths and adult experimental rats, respectively, a significant enhancement of alkaline phosphatase activity in bone tissue for both of the experimental groups of animals, its decline in the serum of 9-monthly rats and the tendency for a decline in 3-monthly ones. The increase of endogenous level of hormone was accompanied by a significant enhancement of acid phosphatase activity by a factor of 1.6 and 1.3 as well as of glicozamino-glikans serum concentrations by a factor of 3.1 and 1.4 for 3-and 9-monthly rats, respectively. IGF-I gene expression level for the animals in both of the groups under invesigation had a tendency for an increase. The conclusion is made that administration of melatonin in a dose of 1 mg/kg intensifies considerably the process of bone tissue physiological remodeling both for young and for adult rats.
Keywords: endogenous level, glicozamino-glikans, phosphatase
1. Alekseev V. P. Osteometry, 148—152 (Nauka, Moscow, 1966) [in Russian].
2. Aschoff J: Biological rhythms, Vol. 1, 414 p. (Mir, Moscow, 1984) [in Russian].
3. Berezovskii V. A., Litovka I. G., Kostjuchenko A. S. Stimulation of bone tissue physiological regeneration by hypoxic
gas mixtures. Fiziol. Zh., 53 (6), 40—45 (2007) [in Ukrainian].
4. Grigoriev A. I., Volozhin A. I., Stupakov G. P. Mineral Metabolism in Human under Changed Gravity Conditions. In: Problems of Space Biology, 74, 214 p. (Nauka, Moscow, 1994) [in Russian].
5. Zambotti V., Bolognani L. Chemical composition and metabolism of cartilage and bone. In: Mehanizmy regeneracii kostnoj tkani, 113 —118 (Medicina, Moscow, 1972) [in Russian].
6. Klyatskin S. A., Lifshits P. I. Analysis of Glycosaminoglycans in the Blood of Patients by the Orcinol Method. Lab. delo, No. 10, 51—53 (1989) [in Russian].
7. Kupriyanovich L. I. Biological rhythms and sleep, 120 p. (Nauka, Moscow, 1976) [in Russian].
8. Litovka I. G. Age characteristics of bone tissue reaction of rats on the dose reduction of partial pressure in inhaled air. Ukr. Med. Al'manah, 7 (3 dodatok), 57—59 (2004) [in Ukrainian].
9. Benevolenskaya L. I. (Ed.) Guide to Osteoporosis, 524 p. (BINOM, Moscow, 2003) [in Russian].
10. Brosch S., Redlich K., Pietschmann P. Pathogenesis of osteoporosis in rheumatoid arthritis. Acta med. austr., 30 (1), 1—5 (2003).
11. Cardinali D. P., Ladizesky M. G., Boggio V. Melatonin effects on bone: experimental facts and clinical perspectives. J. Pineal Res., No. 34, 81—87 (2003).
12. Fernandez-Tresguerres Hernandez-Gil I., Alobera-Gracia M. A., Mariano C. P., Jerez L. B. Physiological bases of bone regeneration II. The remodeling process. Med. Oral. Patol. Oral. Cir. Bucal., No. 1, 151 — 157 (2006).
13. Frost H. Mathematical elements of lamella bone remodeling, 127 p. (Thomas books, Springfield, 1964).
14. McCarty T. L., Centrella M., Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology, No. 124, 301—309 (1989).
15. Ohlsson C, Bengtsson B., Isaksson Olle G. Growth Hormone and Bone. Endocrine Rev., 19 (1), 55—79 (1998).
16. Ostrowska Z., Kos-Kudla B., Nowak M., et al. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr. Regul., 37 (4), 163—174 (2003).
17. Ostrowska Z., Woikowska-Pokrywa K., Kos-Kudla B., et al. Melatonin and bone status. Pol. Merkur. Lekarski, 21 (124), 389—393 (2006).
18. Roth J. A., Byung-Gook Kim, Fei Song, et al. Melatonin promotes osteoblast differentiation and bone formation. J. Biol. Chem., 247 (45), 22041—22047 (1999).
19. Wada T., Nakashima T., Hiroshi N., Penninger J. M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med., 12 (1), 17— 25 (2006).

20. Wolden-Hanson T., Mitton D. R., McCants R. L., et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology, 41 (2), 487—497 (2000).