Dst prediction using the linear regression analysis

1Parnowski, AS
1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2008, 14 ;(3):048-054
Publication Language: Russian
The aim of our investigation is to derive the phenomenological regression of Dst  in relation to solar wind parameters and to use the regression for Dst  prediction. The magnetosphere is considered as a black box, i.e., no models or assumptions are used. We derived the regression providing predicting Dst  for nine hours ahead. The correlation between predicted and measured Dst  values varies from 98.6 % for one-hour prediction to 79.3 % for nine-hour prediction. We also discuss how the form of statistically significant regressors can help understanding the physical mechanism of solar wind influence on geomagnetic activity.
Keywords: Dst prediction, regression analysis, solar wind
1. Akasofu S.-I., Chapman S. Solar-Terrestrial Physics, 900 p. (Mir, Moscow, 1975) [in Russian]. 
2. Baker D. N., Klimas A. J., McPherron R. L., Buchner J. The evolution from weak to strong geomagnetic activity: An interpretation in terms of deterministic chaos. Geophys. Res. Lett., 17, 41—44 (1990).
3. Campbell W. H. Geomagnetic storms, the Dst ring-current myth and lognormal distributions. J. Atmos. and Terr. Phys., 58 (10), 1171 — 1187 (1996).
4. Dungey J. W. Interactions of solar plasma with the geomagnetic field. Planet. Space Sci., 10, 233— 237 (1963).
5. Feldstein Y. I. Modelling of magnetic field of magnetos-pheric ring current as function of interplanetary medium parameters. Space Sci. Rev., 59, 83—105 (1992).
6. Temerin M., Xinlin Li. A new model for the prediction of Dsfon the basis of the solar wind. J. Geophys. Res., 107 (A12), SMP 31-1 (2002).
7. Wu J.-G., Lundstedt H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J. Geophys. Res., 102 (A7), 14255—14268 (1997).