Large-scale Rossby waves in the Antarctic stratosphere

1Agapitov, AV, 1Grytsai, AV, 1Salyuk, DA
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(5):05-11
https://doi.org/10.15407/knit2010.05.005
Publication Language: Ukrainian
Abstract: 
Spring variations in the Antarctic total ozone content are analyzed basing on satellite observation data. Deviations of the total ozone content distribution from zonally-symmetrical one are explained as the impact of large-scale Rossby waves propagating at the lower stratosphere heights. We consider the waves with zonal numbers 1‒3 which play a leading part in the high-latitude stratosphere. It is shown that the observed pattern corresponds to the Rossby wave dispersion relation with allowance made for zonal wind velocity.
Keywords: Antarctic, ozone, Rossby waves
References: 
1. Aleksandrov E. L., Izrael' Iu. A., Karol' I. L., Khrgian A. Kh. Earth's ozone shield and its changes, 288 p. (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].
2. Monin A. S., Zhikharev G. M. Ocean eddies. Uspekhi Fizicheskikh Nauk, 160 (5), 1—47 (1990) [in Russian].
https://doi.org/10.3367/UFNr.0160.199005a.0001 
3. Nezlin M. V. Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type). Uspekhi Fizicheskikh Nauk, 150 (1), 3—60 (1986) [in Russian].
https://doi.org/10.3367/UFNr.0150.198609a.0003 
4. Nerushev A. F. Impact of Intensive Atmospheric Vortices on the Earth's Ozone Layer, 221 p. (Gidrometeoizdat, St. Petersburg, 2003) [in Russian].
5. Petviashvili V. I., Pokhotelov O. A. Solitary Waves in Plasmas and in the Atmosphere, 200 p. (Energoatomizdat, Moscow, 1989) [in Russian].
6. Petviashvili V. I., Pokhotelov O. A. Solitary vortices in plasma. Fizika Plazmy, 12, 1127—1144 (1986) [in Russian].
7. Engelen R. J. The effect of planetary waves on the total ozone zonal deviations in the presence of a persistent blocking anticyclone system. J. Geophys. Res., 101 D (22), 28775—28784 (1996).
8. Farman J. C., Gardiner B. G., Shanklin J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207—210 (1985).
https://doi.org/10.1038/315207a0 
9. Hio Y., Hirota I. Interannual variations of planetary waves in the Southern Hemisphere stratosphere. J. Met. Soc. Jap., 80 (4B), 1013—1027 (2002).
https://doi.org/10.2151/jmsj.80.1013 
10. Hio Y., Yoden S. Quasi-periodic variations of the polar vortex in the Southern Hemisphere stratosphere due to wave—wave interaction. J. Atmos. Sci., 61 (21), 2510—2527 (2004).
https://doi.org/10.1175/JAS3257.1 
11. Randel W. J. Global normal-mode Rossby waves observed in stratospheric ozone data. J. Atmos. Sci., 50 (3), 406—420 (1993).
https://doi.org/10.1175/1520-0469(1993)050<0406:GNMRWO>2.0.CO;2
12. Salby M. L., Callaghan P. F. Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98D (2), 2715— 2727 (1993).
https://doi.org/10.1029/92JD01814 
13. Scientific assessment of ozone depletion: 2006, Report N 50 (World Meteorological Organization, Geneva, 2007).
14. Scott P. K., Dritschel D. G., Polvani L. M., Waugh D. W. Enhancement of Rossby wave breaking by steep potential vorticity gradients in the winter stratosphere. J. Atmos. Sci., 61 (8), 904—918 (2004).
https://doi.org/10.1175/1520-0469(2004)061<0904:EORWBB>2.0.CO;2
15. Shepherd T. G. Large-scale atmospheric dynamics for atmospheric chemists. Chem. Rev., 103 (12), 4509—4531 (2003).
https://doi.org/10.1021/cr020511z 
16. Stolarski R. S., McPeters R. D., Newman P. A. The ozone hole of 2002 as measured by TOMS. J. Atmos. Sci., 62 (3), 716—720 (2005).
https://doi.org/10.1175/JAS-3338.1 

17. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res., 98D (5), 8873—8882 (1993).
https://doi.org/10.1029/92JD02820