On the nature of the microwave spike emission in loop structures of an active region

1Kryshtal, AN, 2Gerasimenko, SV, 1Voitsekhovska, AD
1Main Astronomical Observatory of the NAS of Ukraine, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(5):29-37
https://doi.org/10.15407/knit2010.05.029
Publication Language: Russian
Abstract: 
We investigated the stability of the first harmonics of pure electron oblique bernstein modes which are modified by taking into account the influence of pair Coulomb collisions and by the existence of the weak large-scale electric field in a loop. It is assumed that the main characteristics of magnetoactive plasma at the loop footpoint in the part of current circuit of the loop which corresponds to the lower chromosphere of a solar active region can be obtained from the Fontela, Avrett, and Loeser (FAL) semiempirical model for the solar atmosphere. As the main reasons of instability rise and development the following effects are considered: a) the existence of subdreicer electric field with the amplitude which adiabatical-ly grows slow during the flare process activation; b) dissipation of energy due to pair collisions; c) direction of the perturbation propagation, which is not pure perpendicular to the loop magnetic field.
             Our investigation of the instability growth rate showed that the use of the FAL model instead of the models MAVN and VAL used before leads to the decrease of the instability threshold as a function of subdreicer field amplitude. Some emission in the centimetre-millimetre range can arise under the favourable conditions due to the separation of the generated wave into the kinetic Alfven wave and ordinary electromagnetic wave.
Keywords: chromosphere, loop circuit, magnetoactive plasma
References: 
1. Aleksandrov A. F., Bogdankevich L. S., Rukhadze A. A. Principles of Plasma Electrodynamics, 424 p. (Vysshaya Shkola, Moscow, 1989) [in Russian].
2. Bakunina I. A., Melnikov V. F., Yarkina E. Yu. Long-lived interstitial microwave sources. In: Fizika plazmy v solnechnoj sisteme: Abstracts, Moscow, IKI RAN, February 5—8, 2008, P. 17 (Moscow, 2008) [in Russian].
3. Bogod V. M., Garaimov V. I., Zheleznyakov V. V., Zlotnik E. Ya. Detection of a Cyclotron Line in the Radio Spectrum of a Solar Active Region and Its Interpretation. Astron. zhurn., 77 (4), 313—320 (2000) [in Russian].
4. Krishtal' A. N. Oblique Bernstein modes in the solar atmosphere: Instability of the first harmonic. Kinematika i Fizika Nebesnykh Tel, 13 (1), 24—36 (1997) [in Russian].
5. Kuznetsov S. A., Melnikov V. F. Influence of high plasma density on the spectral evolution of microwave radiation. In: Tez. nauch. konf. pamjati M. T. Grehovoj, Nizhny Novgorod, May 7, 2007, 13—14 (GOU VPO «Nizhegorodskij gosudarstvennyj universitet», UNC «Fundamental'naja radiofizika», 2007) [in Russian].
6. Melnikov V. F., Gorbikov S. P., Pyatakov N. P. Formation of anisotropic distributions of energetic electrons in flare loops. In: Fizika plazmy v solnechnoj sisteme: Abstracts, Moscow, IKI RAN, February 5—8, 2008, P. 10 (Moscow, 2008) [in Russian].
7. Reznikova V. E., Melnikov V. F., Gorbikov S. P., Shibasaki K. Dynamics of the distribution of radio brightness along a flash loop. In: Fizika plazmy v solnechnoj sisteme: Abstracts, Moscow, IKI RAN, February 5—8, 2008, P. 17 (Moscow, 2008) [in Russian].
8. Reznikova V. E., Melnikov V. F., Nakaryakov V. M., Shibasaki K. Radial oscillations of a solar flare arch. In: Tez. nauch. konf. pamjati M. T. Grehovoj, Nizhny Novgorod, May 7, 2007, 15—16 (GOU VPO «Nizhegorodskij gosudarstvennyj universitet», UNC «Fundamental'naja radiofizika», 2007) [in Russian].
9. Reznikova V. E., Melnikov V. F., Shibasaki K. Evolution of radio brightness distribution along extended flare loops. In: Tez. nauch. konf. pamjati M. T. Grehovoj, Nizhny Novgorod, May 7, 2007, 17—18 (GOU VPO «Nizhegorodskij gosudarstvennyj universitet», UNC «Fundamental'naja radiofizika», 2007) [in Russian].
10. Stepanov A. V., Kopylova Yu. G., Tsap Yu. T., et al. Pulsations of Microwave Emission and Flare Plasma Diagnostics. Pisma v Astron. Zhurn., 30 (7), 530—539 (2004) [in Russian].
11. Sheiner O. A., Fridman V. M. Structure of microwave radiation in terms of plasma plasma diagnostics. In: Fizika plazmy v solnechnoj sisteme: Abstracts, Moscow, IKI RAN, February 5—8, 2008, P. 10 (Moscow, 2008) [in Russian].
12. Aschwanden M. I. An evalution of coronal heating models for active region based on Yohkoh, SOHO and TRACE observations. Astrophys. J., 560, 1035— 1043 (2001).
https://doi.org/10.1086/323064 
13. Fontela J. M., Avrett E. H., Loeser R. Energy balance in the solar trasition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J., 406, 319-345 (1993).
https://doi.org/10.1086/172443 
14. Foukal P., Hinata S. Electric fields in the solar atmosphere: a review. Solar Phys., 132 (2), 307—334 (1991).
https://doi.org/10.1007/BF00152291 
15. Heywaerts J., Priest E., Rust D. M. Models of solar flares. Astrophys. J., 216 (1), 213—231 (1977).
16. Kryshtal A. N. Bernstein wave instability in a collisional plasma with a quasistatic electric field. J. Plasma Phys., 60 (3), 469—484 (1998).
https://doi.org/10.1017/S0022377898007004 
17. Machado M. E., Avrett E. H., Vernazza J. E., Noyes R. W. Semiepirical models of chromospheric flare regions. Astrophys. J., 242 (1), 336—351 (1980).
https://doi.org/10.1086/158467 
18. Melnikov V. F., Shibasaki K., Reznikova V. E. Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J., 580, L185—L 188 (2002).
19. Miller J. A., Cargill P. I., Emslie A. G., et al. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res., 102 (A7), 14631—14659 (1997).
https://doi.org/10.1029/97JA00976
20. Solanki S. K. Small-scale solar magnetic fields: an overview. Space Sci. Rev., 63, 1—188 (1993).
https://doi.org/10.1007/BF00749277 
21. Vernazza J. E., Avrett E. H., Loeser R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quite Sun. Astrophys. J. Suppl. Ser., 45 (1), 635—725 (1981).
https://doi.org/10.1086/190731 

22. Yukhimuk A. K., Yukhimuk V. A., Sirenko O. K., Voitenko Yu. M. Parametric excitation of electromagnetic waves in a magnetized plasma. J. Plasma. Phys., 62 (1), 53—64 (1999).
https://doi.org/10.1017/S0022377899007709