The influence of compressibility and non-isothermality of the atmosphere on the propagation of acoustic-gravity waves
Heading:
1Cheremnykh, OK, 1Selivanov, Yu.A, 1Zakharov, IV 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(1):09-19 |
https://doi.org/10.15407/knit2010.01.009 |
Publication Language: Russian |
Abstract: Using the equations for disturbances in a stratified compressible one-dimensional steady state atmosphere with the ideal gas equation of state we did not impose any requirements on temperature and stratification height profiles but use two main variables: amplitude of vertical velocity of wave disturbances on steady background and compressibility (velocity divergence). As a result, the second order ODE for vertical velocity was deduced. General dispersion relation for compressible stratified ideal atmosphere was obtained and analyzed for isothermal, polytropic and MSIS model cases of temperature height profile. The information on acoustic-gravity wave’s behavior in relation to a chosen profile of the atmosphere was derived.
|
Keywords: acoustic-gravity waves, stratification, velocity divergence |
References:
1. Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere: Handbook, 532 p. (Gidrometeoizdat, Leningrad, 1991) [in Russian].
2. Gossard E. E., Hooke W. H. Waves in the Atmosphere, 532 p. (Mir, Moscow, 1978) [in Russian].
3. Erokhin N. S., Zolnikova N. N., Mikhailovskaya L. A., et al. Optimal conditions for the effective passage of buoyancy waves from intense atmospheric vortices to the ionosphere. In: Modern problems of remote sensing of the Earth from space: Sixth All-Russian open annual Conf.: Abstracts, P. 284 (IKI RAN, Moscow, 2008) [in Russian].
4. Prist E., Khud A. (Ed.) Cosmic Magnetic Hydrodynamics: Transl. from Eng., 439 p. (Mir, Moscow, 1995) [in Russian].
5. Lamb H. Hydrodynamics: Transl. from Eng., 928 p. (OGIZ, Moscow, 1947) [in Russian].
6. Lyahov V.V. Acoustic-gravity waves in a nonadiabatic atmosphere. Izv. RAN. Fizika atmosfery i okeana, 43 (3), 342— 350 (2007) [in Russian].
7. Anthes R. A., Rocken C., Ying-Hwa Kuo. Applications of COSMIC to meteorology and climate. Terrestrial Atmospheric and Oceanic Sci., 11, Pt. 1, 115—156 (2000).
https://doi.org/10.3319/TAO.2000.11.1.115(COSMIC)
https://doi.org/10.3319/TAO.2000.11.1.115(COSMIC)
8. Boliunova A. D. Role of the «fountain effect» in the equatorial ionosphere in the prolonged retention of radioactive products of the «Starfish» explosion at F-region altitudes. Cosmic Res., 13 (5), 646—650 (1976).
9. Campos L. M. B. C. On waves in non-isothermal, compressible, ionized and viscous atmospheres. Solar Phys., 82, 355—368 (1983).
https://doi.org/10.1007/BF00145574
https://doi.org/10.1007/BF00145574
10. Clemesha B. R. A review of recent MLT studies at low latitudes. Ann. geophys., 22, 3261—3275 (2004).
https://doi.org/10.5194/angeo-22-3261-2004
https://doi.org/10.5194/angeo-22-3261-2004
11. Einaudi F., Hines C. O. WKB approximation in application to acoustic-gravity waves. Can. J. Phys., 48 (12), 1458—1471 (1970).
https://doi.org/10.1139/p70-185
https://doi.org/10.1139/p70-185
12. Fedorenko A. K., Lizunov G. V., Rothkaehl H. Space observations of the quasiwave perturbations of the atmosphere caused by powerful earthquakes at the altitudes of region F. Geomagn. Aeron., 45 (3), 403—410 (2005) [in Russian].
13. Francis H. S. Acoustic-gravity models and large-scale traveling ionosphere disturbances of a realistic, dissipative atmosphere. J. Geophys. Res., 78, 2278—2301 (1973).
https://doi.org/10.1029/JA078i013p02278
https://doi.org/10.1029/JA078i013p02278
14. Friedrich M., Torkar K. M., Singer W., et al. Signatures of mesospheric particles in ionospheric data. Ann. geophys., 27, 823—829 (2009).
https://doi.org/10.5194/angeo-27-823-2009
https://doi.org/10.5194/angeo-27-823-2009
15. Fritts D. C., Alexander M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 (1), 1003 (2003).
16. Fritts D. C., Yuan L. An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts. J. Geophys. Res., 94D (15), 18.455—18.466 (1989).
17. Gille J. C. Acoustic-gravity waves in the Earth’s atmosphere. I. The general nature of acoustic-gravity waves. II. Acoustic-gravity wave ducting in the atmosphere by vertical temperature structure. Florida State University, Department of Meteorology, Technical Note, No. 66-7, 77 p. (1966).
18. Gravity waves in weather, climate, and atmospheric chemistry: Issues and challenges for the community / TIIMES -NCAR, 2006, 19 p. (Gravity Wave Retreat, 2006).
19. Hines C. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441—1481 (1960).
https://doi.org/10.1139/p60-150
https://doi.org/10.1139/p60-150
20. Kelley M. C. The Earth’s ionosphere. In: Plasma Physics and Electrodynamics, P. 487 (Academic Press, Inc., 1989).
21. Korepanov V., Hayakawa M., Yampolski Yu., Lizunov G. AGW as a seismo-ionospheric coupling responsible agent. Phys. and Chem. Earth., 34, 485—495 (2009).
https://doi.org/10.1016/j.pce.2008.07.014
https://doi.org/10.1016/j.pce.2008.07.014
22. Lindzen R. S., Tung K.-K. Banded convective activity and ducted gravity waves. Mon. Weather Rev., 104, 1602—1617 (1976).
https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2
https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2
23. Liu H.-L., Hagan M. E. Local heating/cooling of the mesosphere due to gravity wave and tidal coupling. Geophys. Res. Lett., 25, 2941—2944 (1999).
https://doi.org/10.1029/98GL02153
https://doi.org/10.1029/98GL02153
24. Marcos F. A., Burke W. J., Lai S. T. Thermospheric space weather modeling. Reprint from Proceedings, 38th AlAA Plasmadynamics and Lasers Conference 25—28 June 2007, 12 p. (Miami, FL, 2007).
https://doi.org/10.2514/6.2007-4527
https://doi.org/10.2514/6.2007-4527
25. Mityakov S. N., Nakaryakov V. M., Trakhtengerts V. Y. Reflection of internal gravity waves from the mesospheric waveguide. Geomagnetism and Aeronomy, 35 (6) (June 1996).
26. Nappo C. J. An introduction to atmospheric gravity waves, 260 p. (Elsevier Science, 2002).
27. Petrukhin N. S. Waveguide properties of an atmosphere with a monotonically varying temperature. Sov. Astron., 27 (4), 408—410 (July-August 1983).
28. Pokhotelov O. A., Liperovskii V. A., Fomichev Iu. P., et al. Modification of the ionosphere during military actions in the Persian Gulf region. Doklady Akademiia Nauk SSSR, 321 (6), 1168—1172 (1991) [in Russian].
29. Prikryl P., Muldrew D. B., Sofko, et al. Solar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves. Ann. geophys., 23 (2), 401—417 (2005).
https://doi.org/10.5194/angeo-23-401-2005
https://doi.org/10.5194/angeo-23-401-2005
30. Prikryl P., Rusin V., Rybansky M. The influence of solar wind on extratropical cyclones. Part 1. Wilcox effect revisited. Ann. geophys., 27, 1—30 (2009).
https://doi.org/10.5194/angeo-27-1-2009
https://doi.org/10.5194/angeo-27-1-2009
31. Rapoport Yu. G,. Hayakawa M., Gotynyan O. E., et al. A. Stable and unstable plasma perturbations in the ionospheric F region, caused by spatial packet of atmospheric gravity waves. Phys. and Chem. Earth, 34, 508— 515 (2009).
https://doi.org/10.1016/j.pce.2008.09.001
https://doi.org/10.1016/j.pce.2008.09.001
32. Schunk R. W., Sojka J. J. Ionosphere-thermosphere space weather issues. J. Atmospheric and Terrestrial Phys., 58 (14), 1527—1574 (October 1996).
https://doi.org/10.1016/0021-9169(96)00029-3
https://doi.org/10.1016/0021-9169(96)00029-3
33. Snively J. B., Pasko V. P. Breaking of thunderstorm generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett., 30 (24), P. 2254 (2003).
34. Sutherland B. R., Yewchuk K. Internal Wave Tunnelling. J. Fluid Mechanics, 511, 125—134 (2004).
https://doi.org/10.1017/S0022112004009863
https://doi.org/10.1017/S0022112004009863
35. Tolstoy I., Pan P. Simplified atmospheric models and the properties of long-period internal and surface gravit waves. J. Atmos. Sci., 27, 31—48 (1970).
https://doi.org/10.1175/1520-0469(1970)027<0031:SAMATP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1970)027<0031:SAMATP>2.0.CO;2
36. Vadas S. L., Fritts D. C. Thermospheric responses to gravit waves arising from mesoscale convective complexes. J Atmos. and Solar-Terr. Phys., 66, 781—804 (2004).
https://doi.org/10.1016/j.jastp.2004.01.025
https://doi.org/10.1016/j.jastp.2004.01.025
37. Walterscheid R. L., Schubert G. Nonlinear evolution of an upward propagating gravity wave: Overturning, convec tion, transience and turbulence. J. Atmos. Sci., 47 (l), 101—125 (1990).