A statistical approach for turbulent processes in the Earth’s magnetosphere from measurements of the satellite Interball
Heading:
1Kozak, LV 1Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(1):28-39 |
https://doi.org/10.15407/knit2010.01.028 |
Publication Language: Ukrainian |
Abstract: We consider the scaling features of the probability distribution functions of magnetic field fluctuations in different regions of the Earth’s magnetosphere and the solar wind plasma at different timescales with the use of the Interball spacecraft data. We examined some changes in the shape and parameters of the probability distribution function for periods of the satellite position in different magnetosphere regions. The probabilities of return Р(0) with t and kurtosis values at different timescales were used for the analysis. Two asymptotic regimes of P(0) characterized by different power laws were found. In particular, while the large timescale of the scaling is in good agreement with the typical scaling features for the normal Gaussian process, in the limit of small timescale the observed scaling resembles the behaviour of the Levy process. The crossover characteristic timescale corresponds to t ~ 1 s. This value can be connected with ion gyrofrequency. The structure functions of different orders were investigated for the analysis of turbulent processes and our results were compared with the log-Poisson cascade model.
|
Keywords: Earth’s magnetosphere, solar wind plasma, statistical approach |
References:
1. Budaev V. P. Generalized scale invariance and log-poisson statistics for turbulence in the scrape-off-layer plasma in the T-10 tokamak, Fizika plazmy, 34 (9), 867–884 (2008) [in Russian].
https://doi.org/10.1134/s1063780x08100012
https://doi.org/10.1134/s1063780x08100012
2. Zaks L. Statistical estimation, 598 p. (Statistika, Moscow, 1976) [in Russian].
3. Kozak L. V., Lui A. T. Statistical analysis of plasma turbulence on the basis of satellite measurements of magnetic field. Kinematika i Fizika Nebes. Tel, 24 (4), 299–307 (2008) [in Russian].
4. Kolmogorov A. N. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers. Dokl. Academy of Sciences of the USSR, 30 (4), 299–303 (1941) [in Russian].
5. Zelenyj L. M., Veselovskij I. S. (Eds.) Space geoheliophysics, Vol. 1, 624 p. (Vol. 1-2; Vol. 1) (Fizmatlit, Moscow, 2008) [in Russian].
6. Novikov E. A., Stjuart R. U. The intermittency of turbulence and a range of energy dissipation fluctuations. Bulletin of the Academy of Sciences of the USSR. Geophysics Series, No. 3, 408—413 (1964) [in Russian].
7. Frik P. G. Turbulence: Approaches and Models, 292 p. (In-t komp'juternyh issled., Izhevsk, 2003) [in Russian].
8. Benzi R., Ciliberto S., Triliccione R., et al. Extended self-similarity in turbulent flows. Phys. Rev. E, 48 (1), 112–118 (1993).
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1103/PhysRevE.48.R29
9. Chechkin A. V., Gorenflo R., Sokolov I. M. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev., 66, 046129, 2099–2112 (2002).
10. Chugunova O., Pilipenko V., Zastenker G., Shevyrev N. Magnetosheath turbulence and magnetospheric Pc3 pulsations. In: Problems of Geocosmos: Proc. 7-th International Conference, St. Petersburg, 2008, Eds by V. N. Troyan, M. Hayakawa, V. S. Semenov, 46–51 (St. Petersburg, 2008).
11. Consolini G., Kretzschmar M., Lui A. T. Y., et al. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J. Geophys. Res., 110, A07202 (2005).
12. Dubrulle B. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett., 73, 959–962 (1994).
https://doi.org/10.1103/PhysRevLett.73.959
https://doi.org/10.1103/PhysRevLett.73.959
13. Frisch U., Sulem P. L., Nelkin M. A simple dynamical model of inter mittent fully developed turbulence. Fluid Mech., 87, 719–736 (1978).
https://doi.org/10.1017/S0022112078001846
https://doi.org/10.1017/S0022112078001846
14. Marsch E., Tu C.-Y. Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear processes in geophysics, 101–124 (1997).
https://doi.org/10.5194/npg-4-101-1997
https://doi.org/10.5194/npg-4-101-1997
15. Narita Y., Glassmeier K.-H. Dispersion analysis of low-frequency waves through the terrestrial bow shock. J. Geophys. Res., 110, A12215 (2005).
16. Onsager T. G., Thomsen M. F. The Earth’s foreshock, bow shock, and magnetosheath. Rev. Geophys., 29, 998–1007 (1991).
17. Savin S., Amata E., Zelenyi L., et al. High kinetic energy jets in the Earth’s magnetosheath: Implications for plasma dynamics and anomalous transport. JETP Lett., 87, 593–599 (2008).
https://doi.org/10.1134/S0021364008110015
https://doi.org/10.1134/S0021364008110015
18. She Z., Leveque E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett., 72, 336–339 (1994).
https://doi.org/10.1103/PhysRevLett.72.336
https://doi.org/10.1103/PhysRevLett.72.336
19. Shevyrev N. N., Zastenker G. N. Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks. Planet. Space Sci., 53, 95–102 (2005).