Geometric properties of solar wind discontinuities on the Earth’s orbit

1Reshetnyk, VN, 1Agapitov, AV
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(1):68-76
Publication Language: Russian
We analyzed the solar wind discontinuity geometry near the Earth’s orbit on the basis of measurements from the Wind, ACE, STEREO A, and STEREO B spacecrafts during 2007. A case study of discontinuity events based on the STEREO A, STEREO B, ACE and Wind measurements is presented. The dependence of the normal direction obtained by different spacecrafts on the cross spacecraft distance was analysed. It is found that the estimated curvature radii of discontinuity front is independent on spatial scale in the range of STEREO A and STEREO B observations. The curvature radii of processed events are found to be of the order of a thousand of RE.
Keywords: discontinuity, solar wind, waves
1. Andreeova K., Prech L. Propagation of interplanetary shocks into the Earth’s magnetosphere. Adv. Space Res., 40 (12), 1871—1880 (2007).
2. Andreeova K., Pulkkinen T. I., Laitinen T. V., Prech L. Shock propagation in the magnetosphere: Observations and MHD simulations compared. J. Geophys. Res., 113A (9) (2008).
3. Burlaga L. F. Interplanetary streams and their interaction with the Earth. Space Sci. Revs., 17, 327—352 (1975).
4. Cid C., Hidalgo M. A., Nieves-Chinchilla T., et al. Plasma and magnetic field inside magnetic clouds: A global study. Solar Phys., 207 (1), 187—198 (2002).
5. Gold R. E., Krimigis S. M., Hawkins S. E., et al. Electron, proton, and alpha monitor on the advanced composition Explorer spacecraft. Space Sci. Revs., 86 (1-4), 541—562 (1998).
6. Khrabrov A. V., Sonnerup B. U. Ö. Error estimates for minimum variance analysis. J. Geophys. Res., 103A (4), 6641—6652 (1998).
7. Lepping R. P., McClearnan Wu C. C. Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res., 108A (7), 1279—1292 (2003).
8. Lin R. P., Anderson K. A., Ashford S., et al. A three-dimensional plasma and energetic particle investigation for the Wind spacecraft. Space Sci. Revs., 71 (1-4), 125—153 (1995).
9. Luhmann J. G., Curtis D. W., Schroeder P., et al. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Revs., 136 (1-4), 117—184 (2008).
10. McKenna-Lawlor S. M. P., Dryer M., Smith Z., et al. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations. Ann. Geophys., 20 (7), 917—935 (2002).
11. Mulligan T., Russell C. T. Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res., 106A (6), 10581—10596 (2001).
12. Prech L., Nemecek Z., Safrankova J. Response of magne-tospheric boundaries to the interplanetary shock: Themis contribution. J. Geophys. Res., 35 (17), CiteID L17S02 (2008).
13. Russell C. T., Gosling J. T., Zwickl R. D., Smith E. J. Multiple spacecraft observations of interplanetary shocks: ISEE three-dimensional plasma measurements. J. Geophys. Res., 88, 9941—9947 (1983).
14. Shastun V. V., Agapitov O. Propagation of the fast MHD wave. Earth Magnetosphere Generated by Sudden Impulses in the Solar Wind: Proc. of the 17th Annual Conference of Doctoral Students, WDS 2008/ f-2, 133— 137 (2008).
15. Smith C. W., L’Heureux J., Ness N. F., et al. The ACE magnetic fields experiment. Space Sci. Revs, 86 (1-4), 613—632 (1998).
16. Sonnerup B. U. O., Cahill L. J. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res., 72, 171—186 (1967). ut-grid-align:none; text-autospace:none'>19. Sharifi J., Araabi B. N., Lucas C. Multi-step prediction of Dstindex using singular spectrum analysis and locally linear neurofuzzy modelling. Earth Planets Space, 58 (3), 331–341 (2006).