An analysis of propagation and dissipation of atmosphere gravity waves

1Pylypenko, SG, 1Kozak, LV
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(4):22-29
https://doi.org/10.15407/knit2010.04.022
Publication Language: Ukrainian
Abstract: 
We consider the propagation of atmosphere gravity waves in non-isothermal windless atmosphere with regard to the viscosity and heat conductivity. It is determined that the maximum for the atmosphere gravity waves amplitude corresponds to altitudes of near 90 km (mesopause) for the considered characteristics. The vertical temperature gradient is found to be the main factor of the wave spread and dissipation. The coefficients of viscosity and heat conductivity have a weak influence on the wave amplitude. Our theoretical calculations for temperature changes at the mesopause altitudes are compared with the temperature changes over the storms Wilma, Haitang, and Katrina which were obtained from an analysis of measurements of the satellite TIMED.
Keywords: gravity waves, heat conductivity, viscosity
References: 
1. Gavrilov N. M. Propagation of internal gravity waves in a stratified atmosphere. Izv. of AS USSR. Atmospheric and Oceanic Physics, 21 (9), 921—927 (1985) [in Russian].
2. Gossard E. E., Hooke W. H. Waves in the  Atmosphere, 532 p. (Mir, Moscow, 1975) [in Russian].
3. Grigor’ev G. I.  Acoustic-gravity waves in the earth’s atmosphere. Izv. vuzov. Radiofizika, 42 (1), 3—25 (1999) [in Russian].
4. Kozak L.V. Changes of turbulence processes in thermosphere in the passage of inner gravity waves. Kosm. nauka tehnol., 8 (5-6), 86—90 (2002) [in Ukrainian].
5. Hines C. O. Thermospheric Circulation, 428 p. (Mir, Moscow, 1975) [in Russian].
6. Francis S. H. Global propagation of atmospheric gravity waves: a review. J. Atmos. Terr. Phys., 37, 1011—1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4
7. Francis S. H. Acoustic-Gravity Modes and Large-Scale Traveling Ionospheric Disturbances of a Realistic, Dissipative Atmosphere. J. Geophys. Res., 78, 2278—2301 (1973).
https://doi.org/10.1029/JA078i013p02278
8. Hedin A. E. Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere. J. Geophys. Res., 96, 1159—1172 (1991).
https://doi.org/10.1029/90JA02125
9. Hocking W. K. Turbulence in the altitude region 80—120 km. Adv. Space Res., 10 (12), 153— 161 (1990).
https://doi.org/10.1016/0273-1177(90)90394-F
10. Hodges R. R. Jr. Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res., 74, 4087—4090 (1969).
https://doi.org/10.1029/JA074i016p04087
11. Imamura T., Ogawa T. Radiative damping of gravity waves in the terrestrial planetary atmospheres. Geophys. Res. Lett., 22 (3), 267—270 (1995).
https://doi.org/10.1029/94GL02998
12. Kozak L. V., Dzubenko M. I., IvchenkoV. M. Temperature and thermosphere dynamics behavior analysis over earthquake epicentres from satellite measurements. Phys. and Chem. Earth. Parts A/B/C, 29 (4–9), 507—515 (2004).
https://doi.org/10.1016/j.pce.2003.09.020
13. Midgley J. E., Liemohn H. B. Gravity waves in a realistic atmosphere. J. Geophys. Res., 71, 3729—3730 (1966).
https://doi.org/10.1029/JZ071i015p03729
14. Pitteway M., Hines C. The viscous damping of atmospheric gravity waves. Can. J. Phys., 41, 1935—1948 (1963).
https://doi.org/10.1139/p63-194
15. Volland H. The upper atmosphere as a multiply refractive medium for neutral air motions. J. Atmos. Terr. Phys., 31, 491—530 (1969).
https://doi.org/10.1016/0021-9169(69)90002-6
16. Volland H. Full wave calculations of gravity wave propagation through the thermosphere. J. Geophys. Res., 74, 1786—1823 (1969).
https://doi.org/10.1029/JA074i007p01786
17. Zhang S. D., Yi F. A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res., 107D (14), 1—9 (2002). J., 4 (3-4), 84—135 (1956).