The dynamics of the spacecraft with gyro-gravity stabilization in the deployment of a flexible ring antenna
Heading:
1Zakrzhevskii, AE, 2Khoroshylov, VS 1S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine 2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine |
Kosm. nauka tehnol. 2011, 17 ;(5):03-18 |
https://doi.org/10.15407/knit2011.05.003 |
Publication Language: Russian |
Abstract: We constructed a generalized mathematical model and performed a numerical simulation of the dynamics of a stabilized spacecraft which carries a body of changeable geometry. This model describes the deployment of a compact body into a flexible ring antenna.
|
Keywords: gyro-gravity stabilization, numerical simulation of the dynamics, spacecraft |
References:
1. Beletskii V. V. The motion of an artificial satellite around the center of mass, 416 p. (Nauka, Moscow, 1965) [in Russian].
2. Branets V. N., Shmyglevskii I. P. Use of Quaternions in the Problems of Orientation of Solid Bodies, 320 p. (Nauka, Moscow, 1973) [in Russian].
3. Zakrzhevskii A. E., Tkachenko V. F., Khoroshilov V. S. The dynamics of deployment of the ring antennae on the spacecraft without stabilization. Kosm. nauka tehnol., 15 (6), 57—65 (2009) [in Russian].
https://doi.org/10.15407/knit2009.06.057
https://doi.org/10.15407/knit2009.06.057
4. Lurie A. I. Analytical Mechanics, 824 p. (Fizmatgiz, Moscow, 1961) [in Russian].
5. Banerjee A. K. Order-n formulation of extrusion of a beam with large bending and rotation. J. Guidance, Control, and Dynamics, 15 (1) (1992).
https://doi.org/10.2514/3.20809
https://doi.org/10.2514/3.20809
6. Banerjee A. K., Kane T. R. Extrusion of a beam from a rotating base. J. Guidance, Control, and Dynamics, 12 (2), 140—146 (1989).
https://doi.org/10.2514/3.20383
https://doi.org/10.2514/3.20383
7. Banerjee A. K., Nagarajan S. Efficient simulation of large overall motion of beams undergoing large deflection. Multi body System Dynamics, N 1, 113—126 (1997).
https://doi.org/10.1023/A:1009720622253
https://doi.org/10.1023/A:1009720622253
8. Barakat R. Transverse vibrations of a moving thin rod. J. Acoust. Soc. Amer., 43 (3), 533—539 (1968).
https://doi.org/10.1121/1.1910862
https://doi.org/10.1121/1.1910862
9. Barkow B., Steindl A., Troger H., Wiedermann G. Various methods of controlling the deployment of a tethered satellite. J. Vibration and Control, No. 9, 187— 208 (2003).
https://doi.org/10.1177/107754603030747
https://doi.org/10.1177/107754603030747
10. Bowers E. J., Williams C. E. Optimization of RAE satellite boom deployment timing. J. Spacecraft and Rockets, 7 (9), 1057—1062 (1970).
https://doi.org/10.2514/3.30102
https://doi.org/10.2514/3.30102
11. Cherchas D. B. Dynamics of spin-stabilized satellites during extension of long flexible booms. J. Spacecraft and Rockets, 8 (7), 802—804 (1971).
https://doi.org/10.2514/3.30323
https://doi.org/10.2514/3.30323
12. Cloutier G. J. Dynamics of deployment of extendible booms from spinning space vehicles. J. Spacecraft and Rockets, 5 (5), 547—552 (1968).
https://doi.org/10.2514/3.29303
https://doi.org/10.2514/3.29303
13. Creamer N. G. Deployment of a flexible beam from an oscillating base. J. Guidance, Control, and Dynamics, 15 (2), 527—529 (1987).
https://doi.org/10.2514/3.20868
https://doi.org/10.2514/3.20868
14. Dranovskii V. I., Khoroshylov V. S., Zakrzhevskii A. E. Spacecraft dynamics with regard to elastic gravitational stabilizer deployment. Acta Astronautica, 64 (5-6), 501—513 (2009).
https://doi.org/10.1016/j.actaastro.2008.10.004
https://doi.org/10.1016/j.actaastro.2008.10.004
15. Lang W. E., Honeycutt G. N. Simulation of deployment dynamics of spinning spacecraft, TN D-4074, NASA (Aug. 1967).
16. Lewis J. A., Zajac E. E. A two-gyro, gravity-gradient satellite attitude control system. Bell Syst. Techn. J., 43 (6), 2705—2765 (1964).
https://doi.org/10.1002/j.1538-7305.1964.tb01025.x
https://doi.org/10.1002/j.1538-7305.1964.tb01025.x
17. Lips K. W., Graham W. B., Vigneron F. R., Hunter D. G. Dynamics and control characteristics for the WISP 300 m dipole antenna/shuttle configuration. AAS Paper 85-365, No. 8 (1985).
18. Lips K. W., Modi V. J. Three-dimensional response characteristics for spacecraft with deploying flexible appendages. J. Guidance and Control, 4 (5), 650—656 (1981).
https://doi.org/10.2514/3.56123
https://doi.org/10.2514/3.56123
19. Steindl A., Steiner W., Troger H. Optimal control of retrieval of a tethered subsatellite. In: Solid mechanics and its applications, Ed. by G. Rega, F. Vestroni, 441—450 (IUTAM; Springer-Verlag, 2005).
https://doi.org/10.1007/1-4020-3268-4_41
https://doi.org/10.1007/1-4020-3268-4_41
20. Steindl A., Troger H. Optimal Control of Deployment of a Tethered Subsatellite. Nonlinear Dynamics, 31, 257—274 (2003).
https://doi.org/10.1023/A:1022956002484
https://doi.org/10.1023/A:1022956002484
21. Tabarrok B., Leech C. M., Kim Y. I. On the dynamics of an axially moving beam. J. Franklin Inst., 297 (3), 201—220 (1974).
https://doi.org/10.1016/0016-0032(74)90104-5
https://doi.org/10.1016/0016-0032(74)90104-5
22. Tsuchiya K. Dynamics of a spacecraft during extension of flexible appendages. J. Guidance, Control, and Dynamics, 6 (2), 100—103 (1983).
https://doi.org/10.2514/3.56343
https://doi.org/10.2514/3.56343
23. Zakrzhevskii A. E. Slewing of flexible spacecraft with minimal relative flexible acceleration. J. Guidance, Control, and Dynamics, 31 (3), 563—570 (2008).
https://doi.org/10.2514/1.32215
https://doi.org/10.2514/1.32215
24. Zakrzhevskii A. E., Matarazzo G., Khoroshilov V. S. Dynamics of systems of bodies with configuration changing by a program. Int. Appl. Mechanics, 40 (3), 345—350 (2004).
https://doi.org/10.1023/B:INAM.0000031919.06748.ee
https://doi.org/10.1023/B:INAM.0000031919.06748.ee
25. Zakrzhevskii A. E., Tkachenko V. F., Khoroshylov V. S. Eigen-modes and eigen-frequencies of plane oscillations of a flexible ring fixed in one point. Int. Appl. Mechanics, 46 (12), 124—136 (2010).
26. Timoshenko S. P. Vibrations problems in engineering. (D. Van Nostrand company, Inc., Toronto; New York; London, 1955).