The dynamics of the spacecraft with gyro-gravity stabilization in the deployment of a flexible ring antenna

1Zakrzhevskii, AE, 2Khoroshylov, VS
1S.P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Yangel Yuzhnoye State Design Office, Dnipro, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(5):03-18
https://doi.org/10.15407/knit2011.05.003
Publication Language: Russian
Abstract: 
We constructed a generalized mathematical model and performed a numerical simulation of the dynamics of a stabilized spacecraft which carries a body of changeable geometry. This model describes the deployment of a compact body into a flexible ring antenna.
Keywords: gyro-gravity stabilization, numerical simulation of the dynamics, spacecraft
References: 
1. Beletskii V. V. The motion of an artificial satellite around the center of mass, 416 p.  (Nauka, Moscow, 1965) [in Russian].
2. Branets V. N., Shmyglevskii I. P. Use of Quaternions in the Problems of Orientation of Solid Bodies, 320 p. (Nauka, Moscow, 1973) [in Russian].
3. Zakrzhevskii A. E., Tkachenko V. F., Khoroshilov V. S. The dynamics of deployment of the ring antennae on the spacecraft without stabilization. Kosm. nauka tehnol., 15 (6), 57—65 (2009) [in Russian].
https://doi.org/10.15407/knit2009.06.057
4. Lurie A. I. Analytical Mechanics, 824 p. (Fizmatgiz, Moscow, 1961) [in Russian].
5. Banerjee A. K. Order-n formulation of extrusion of a beam with large bending and rotation. J. Guidance, Control, and Dynamics, 15 (1) (1992).
https://doi.org/10.2514/3.20809
6. Banerjee A. K., Kane T. R. Extrusion of a beam from a rotating base. J. Guidance, Control, and Dynamics, 12 (2), 140—146 (1989).
https://doi.org/10.2514/3.20383
7. Banerjee A. K., Nagarajan S. Efficient simulation of large overall motion of beams undergoing large deflection. Multi body System Dynamics, N 1, 113—126 (1997).
https://doi.org/10.1023/A:1009720622253
8. Barakat R. Transverse vibrations of a moving thin rod. J. Acoust. Soc. Amer., 43 (3), 533—539 (1968).
https://doi.org/10.1121/1.1910862
9. Barkow B., Steindl A., Troger H., Wiedermann G. Various methods of controlling the deployment of a tethered satellite. J. Vibration and Control, No. 9, 187— 208 (2003).
https://doi.org/10.1177/107754603030747
10. Bowers E. J., Williams C. E. Optimization of RAE satellite boom deployment timing. J. Spacecraft and Rockets, 7 (9), 1057—1062 (1970).
https://doi.org/10.2514/3.30102
11. Cherchas D. B. Dynamics of spin-stabilized satellites during extension of long flexible booms. J. Spacecraft and Rockets, 8 (7), 802—804 (1971).
https://doi.org/10.2514/3.30323
12. Cloutier G. J. Dynamics of deployment of extendible booms from spinning space vehicles. J. Spacecraft and Rockets, 5 (5), 547—552 (1968).
https://doi.org/10.2514/3.29303
13. Creamer N. G. Deployment of a flexible beam from an oscillating base. J. Guidance, Control, and Dynamics, 15 (2), 527—529 (1987).
https://doi.org/10.2514/3.20868
14. Dranovskii V. I., Khoroshylov V. S., Zakrzhevskii A. E. Spacecraft dynamics with regard to elastic gravitational stabilizer deployment. Acta Astronautica, 64 (5-6), 501—513 (2009).
https://doi.org/10.1016/j.actaastro.2008.10.004
15. Lang W. E., Honeycutt G. N. Simulation of deployment dynamics of spinning spacecraft, TN D-4074, NASA (Aug. 1967).
16. Lewis J. A., Zajac E. E. A two-gyro, gravity-gradient satellite attitude control system. Bell Syst. Techn. J., 43 (6), 2705—2765 (1964).
https://doi.org/10.1002/j.1538-7305.1964.tb01025.x
17. Lips K. W., Graham W. B., Vigneron F. R., Hunter D. G. Dynamics and control characteristics for the WISP 300 m dipole antenna/shuttle configuration. AAS Paper 85-365, No. 8 (1985).
18. Lips K. W., Modi V. J. Three-dimensional response characteristics for spacecraft with deploying flexible appendages. J. Guidance and Control, 4 (5), 650—656 (1981).
https://doi.org/10.2514/3.56123
19. Steindl A., Steiner W., Troger H. Optimal control of retrieval of a tethered subsatellite. In: Solid mechanics and its applications, Ed. by G. Rega, F. Vestroni, 441—450 (IUTAM; Springer-Verlag, 2005).
https://doi.org/10.1007/1-4020-3268-4_41
20. Steindl A., Troger H. Optimal Control of Deployment of a Tethered Subsatellite. Nonlinear Dynamics, 31, 257—274 (2003).
https://doi.org/10.1023/A:1022956002484
21. Tabarrok B., Leech C. M., Kim Y. I. On the dynamics of an axially moving beam. J. Franklin Inst., 297 (3), 201—220 (1974).
https://doi.org/10.1016/0016-0032(74)90104-5
22. Tsuchiya K. Dynamics of a spacecraft during extension of flexible appendages. J. Guidance, Control, and Dynamics, 6 (2), 100—103 (1983).
https://doi.org/10.2514/3.56343
23. Zakrzhevskii A. E. Slewing of flexible spacecraft with minimal relative flexible acceleration. J. Guidance, Control, and Dynamics, 31 (3), 563—570 (2008).
https://doi.org/10.2514/1.32215
24. Zakrzhevskii A. E., Matarazzo G., Khoroshilov V. S. Dynamics of systems of bodies with configuration changing by a program. Int. Appl. Mechanics, 40 (3), 345—350 (2004).
https://doi.org/10.1023/B:INAM.0000031919.06748.ee
25. Zakrzhevskii A. E., Tkachenko V. F., Khoroshylov V. S. Eigen-modes and eigen-frequencies of plane oscillations of a flexible ring fixed in one point. Int. Appl. Mechanics, 46 (12), 124—136 (2010).

26. Timoshenko S. P. Vibrations problems in engineering. (D. Van Nostrand company, Inc., Toronto; New York; London, 1955).