Simulation of effects of the MHD-interaction of bodies with the Earth’s atmosphere in a rarified plasma flow

1Shuvalov, VA, 2Kulagin, SN, 2Kochubei, GS, 1Tokmak, NA
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(5):29-39
https://doi.org/10.15407/knit2011.05.029
Publication Language: Russian
Abstract: 
We show that some partial physical simulation of effects of the MHD-interaction of re-entry spacecrafts with the Earth’s atmosphere is possible for a hypersonic rarified plasma flow under MHD-approximation conditions. These effects are a decrease in a convective heat flow and increase in the drag force.
Keywords: hypersonic flow, MHD, plasma, simulation
References: 
1. Bityurin V. A., Bocharov A. N. Magnetohydrodynamic interaction in hypersonic flow around a blunt body airflow. Izv. RAN. Meh. zhidkosti i gaza. No. 5, 188—203 (2006) [in Russian].
2. Bityurin V. A., Bocharov A. N. Ground MHD experiments in hypersonic flows. Teplofiz. vysokih temperatur, 48 (6), 916—923 (2010) [in Russian].
3. Bityurin V. A., Vatazhin A. B., Gus'kov O. V., Kopchenov V. I. Hypersonic flow past the spherical nose of a body in the presence of a magnetic field. Izv. RAN. Meh. zhidkosti i gaza. No. 4, 169—179 (2004) [in Russian].
4. Blick E. F. Aerodynamic Coefficients in the Slip and Transition Regime. Raketnaja tehnika i kosmonavtika, 1 (11), 246—248 (1963) [in Russian].
5. Boid R. Lengmyur’s probes by the spaceship. In: Plasma research methods, Ed. by W. Lochte-Holtgrewen, 506—538 (Mir, Moscow, 1971) [in Russian].
6. Granovsky V. L. Electric Current in Gases, 430 p. (Gostehizdat, Moscow, 1952) [in Russian].
7. Dresvin S. V., Donskoi A. V., Goldfarb V. M., Klubnikin V. S. Physics and the low-temperature plasma equipment, 352 p. (Atomizdat, Moscow, 1972) [in Russian].
8. Sauer F. M. Convective heat transfer from spheres in free molecular flow. Mehanika, No. 1, 14—16 (1952) [in Russian].
9. Kalikhman L. E. Aerodynamics of rarefied gas, 187 p. (GONTI, Moscow, 1961) [in Russian].
10. Kinslow M., Potter J. L. Drag of Spheres in Rarefied Hypervelocity Flow. Raketnaja tehnika i kosmonavtika, 1 (11), 3—11 (1963) [in Russian].
11. Kozlov O. V. Plasma electric probe, 291 p. (Atomizdat, Moscow, 1969) [in Russian].
12. Koshmarov Yu. A., Gorskaya N. M. Heat transfer and equilibrium temperature of a sphere in a supersonic rarefied gas flow. Izv. AN SSSR. Meh. zhidkosti i gaza, No. 4, 175—177 (1966) [in Russian].
13. Koshmarov Yu. A., Ryzhov Yu. A. Applied Dynamics of Rarified Gas, 184 p. (Mashinostroenie, Moscow, 1977) [in Russian].
14. Krasnov N. F. Aerodynamics, 632 p. (Vyssh. shk., Moscow, 1971) [in Russian].
15. Mitchner M., Kruger Ch. H. Partially ionized gases, 496 p. (Mir, Moscow, 1976) [in Russian].
16. Novitskiy L. A., Stepanov B. M. Material Optical Properties at Low Temperatures, 224 p. (Mashinostroenie, Moscow, 1980) [in Russian].
17. Raizer Yu. P. Gas Discharge Physics, 592 p. (Nauka, Moscow, 1987) [in Russian].
18. Sutton G. W., Sherman A. Engineering Magnetohydrodynamics, 492 p. (Mir, Moscow, 1968) [in Russian].
19. Sakharov V. A., Mende N. P., Bobashev S. V., Wie D. M. Magnetohydrodynamic control of a supersonic flow about a body. Pis'ma v ZhTF, 32 (14), 40—45 (2006) [in Russian].
20. Stalder J. R., Goodwin G., Creager M. O. A Comparison of Theory and Experiment for High-speed Free-molecule Flow. Mehanika, No. 3, 74—85 (1954) [in Russian].
21. Talbot L. The theory of the Langmuir probe at the critical point. Mehanika, No. 5, 75—87 (1961) [in Russian].
22. Phillips W. M., Kuhlthau A. R. Transition regime sphere drag near the free molecule limit. Raketnaja tehnika i kosmonavtika, 9 (7), 277—278 (1971) [in Russian].
23. Hadzhimihalis K., Brandin K. Effect of wall temperature on the resistance of a sphere in a hypersonic rarefied gas flow. In: Dinamika razrezhennyh gazov, Ed. by V. P. Shidlovsky, 274—282  (Mir, Moscow, 1976) [in Russian].
24. Shuvalov V. A. Transfer of gas-ion momentum and energy to an electrically conductive surface partially coated by a thin dielectric layer. Prikl. meh. i tehn. fizika, No. 4, 17—25 (1986) [in Russian].
25. Shuvalov V. A., Bandel K. A., Priymak A. I., Kochubey G. S. Magnetohydrodynamic deceleration of «magnetized» planets in solar wind plasma. Kosm. nauka tehnol., 15 (6), 3—13 (2009) [in Russian].
https://doi.org/10.15407/knit2009.06.003
26. Shuvalov V. A., Kochubei G. S., Lazuchenkov D. N. Diagnostics of nonequilibrium collisional plasma with a thermoanemometric probe. Teplofiz. vysokih temperatur, 49 (1), 28—35 (2011) [in Russian].
27. Shuvalov V. A., Kochubei G. S., Priimak A. I., et al. Changes of properties of the materials of spacecraft solar arrays under the action of atomic oxygen. Kosmicheskie Issledovaniia, 45 (4), 314—324 (2007) [in Russian].
https://doi.org/10.1134/s001095250704003x
28. Shuvalov V. A., Priimak A. I., Bandel' K. A., et al. Control over heat exchange and deceleration of a "magnetized" body in a rarefied plasma flow. Teplofiz. vysokih temperatur, 49 (3), 343—351 (2011) [in Russian].
29. Cristifolini A., Borghi C. A., Neretti G., et al. Magnetohydrodynamics interaction over an axysymmetric body in a hypersonic flow. J. Spacecraft and Rockets, 45 (3), 438—444 (2008).
https://doi.org/10.2514/1.29919
30. Fujino T., Sugita H., Mizuno M., et al. Influences of electrical conductivity of wall on magnetohydrodynamic control of aerodynamic heating. J. Spacecraft and Rockets, 43 (1), 63—70 (2006).
https://doi.org/10.2514/1.13770
31. Fujino T., Yoshino T., Ishikawa M. Numerical analysis of reentry trajectory coupled with magnetohydrodynamic flow control. J. Spacecraft and Rockets, 45 (5), 911—920 (2008).
https://doi.org/10.2514/1.33385
32. Gulhan A., Esser B., Koch U., et al. Experimental verification of heat-flux mitigation by electomagnetic fields in partially-ionized - Argon flows. J. Spacecraft and Rockets, 46 (2), 274—283 (2009).
https://doi.org/10.2514/1.39256
33. Katsurayama H., Kawamura M., Matsuda A., Abe T. Kinetic and continuum simulations of electromagnetic control of a simulated reentry flow. J. Spacecraft and Rockets, 45 (2), 248—254 (2008).
https://doi.org/10.2514/1.31702
34. Matting F. W. Approximate bridging relations in the transitional regime between continuum and free-molecule flow. J. Spacecraft and Rockets, 8 (1), 35—40 (1971).
https://doi.org/10.2514/3.30214
35. Porter R. W., Cambell A. B. Hall effect in flight magneto-gasdynamics. AIAA Journal, 5 (12), 2208—2215 (1967).
https://doi.org/10.2514/3.4410
36. Probstein R. F. Heat transfer in rarefied gas flow. Theory and Fundament. Res. Heat Transfer, No. 4, 33—60 (1963).
37. Riabon V. V. Heat transfer a hypersonic sphere with diffuse rarefied gas injection. J. Spacecraft and Rockets, 41 (4), 698—708 (2004).
https://doi.org/10.2514/1.9291
38. Shang J. S., Kimmel R., Hayes J., et al. Hypersonic experimental facility for magnetoaerodynamic interactions. J. Spacecraft and Rockets, 42 (5), 780—789 (2005).
https://doi.org/10.2514/1.8579
39. Sherman F. S. A survey of experimental results and methods for the transition regime of rarefied gas dynamics. Rarefied gas dynamics, 2 (4), 228— 260 (1967).

40. Yoo C. Y., Porter B. W. Numerical analysis of the viscous hypersonic MHD blunt body problem. AIAA Journal, 11 (3), 383—384 (1973).
https://doi.org/10.2514/3.6758