Theoretical and methodological principles of hydrological and hydrogeological risk assessment from remote sensing data

1Kostyuchenko, Yu.V, 2Kopachevsky, IM, 3Yushchenko, MV
1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
3State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine
Kosm. nauka tehnol. 2011, 17 ;(6):10-18
https://doi.org/10.15407/knit2011.06.010
Publication Language: Ukrainian
Abstract: 
We propose an integrated approach to risk assessment of dangerous hydrological and hydrogeological processes which is based on satellite data observations. A theoretical justification of the relationship between the vegetation water stress impacts and variations of spectral reflectance caused by changes in plant pigments concentration is given. We present our quantitative approach to estimating the probability of emergency connected with dangerous hydrological and hydrogeological processes using satellite data as well as to integrated risk assessment associated with the hydrological and hydrogeological hazard. 
 
Keywords: hydrological and hydrogeological processes, satellite data observations, vegetation
References: 
1. Kostyuchenko Yu. V. Validation data in solving problems of flood risk forecasting. In: Multispectral remote sensing in nature management, Ed.by V. I. Lyalko, M. O. Popov, 282—284 (Nauk.dumka, Kyiv, 2006) [in Ukrainian].
2. Kostyuchenko Yu. V., Yushchenko M. V., Bilous Yu. G. Modeling basic trends of development and emergencies hydrological character. In: Multispectral remote sensing in nature management, Ed.by V. I. Lyalko, M. O. Popov, 120—143 (Nauk.dumka, Kyiv, 2006) [in Ukrainian].
3. Glushkov V. M. (Ed.) Encyclopedia of Cybernetics, Vol. 2, 620 p. (Gl. red. Ukr. sov. jencikl., Kiev, 1974) [in Russian].
4. Anthes R. A., Hsie E. Y., Kuo Y. H. Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Techn. Note, Natl Cent. For Atmos. Res., NCAR/TN-282+STR, 70 p. (Boulder, Colorado, 1987).
5. Bartell S. M., Gardner R. H., O’Neill R. V. Ecological risk estimation. (Lewis Publishers, Boca Raton, FL, 1992).
6. Bernardo J. M., Smith A. F. M. Bayesian Theory. (Wiley, Chichester, UK, 1994).
https://doi.org/10.1002/9780470316870
7. Blackburn G. A. Spectral indices for estimation photosyn-thetic pigment concentrations: a test using senescent tree leaves. Int. J. Remote Sens., 4, 657— 675 (1998).
https://doi.org/10.1080/014311698215919
8. Budyko M. I. Climate and Life, 508 p. (Elsevier, New York, 1974).
9. Ceccato P., Flasse S., Tarantola S., et al. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ., 77, 22— 33 (2001).
https://doi.org/10.1016/S0034-4257(01)00191-2
10. Choudhury B. J. Estimating gross photosynthesis using satellite and ancillary data: Approach and preliminary results. Remote Sens. Environ., 75, 1—21 (2001).
https://doi.org/10.1016/S0034-4257(00)00151-6
11. Climate Change 2001. The scientific basis. Report of the intergovernmental panel on climate change, 83 p. (Univ. Press, Cambridge, 2001).
12. de Finetti B. Theory of Probability, Vol. 2, 392 p. (J. Wiley & Sons, New York, 1990).
13. Dobrowski S. Z., Pushnic J. C., Zarco-Tejada P. J., Ustin S. L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ., 97, 403—414 (2005).
14. Entekhabi D., Rodriguez-Iturbe I., Bras R. Variability in largescale water balance with land surface-atmosphere interaction. J. Clim., 5, 798—813 (1992).
https://doi.org/10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2
15. Ermoliev Yu., von Winterfeldt D. Risk, security and robust solutions. IIASA Interim Report, IR-10-013, 41 p. (2010).
16. Ermoliev Y. Stochastic quasigradient methods: Applications. In: Encyclopedia of Optimization, Eds C. Floudas, P. Pardalos, 3801—3807 (Springer Verlag, New York, 2009).
https://doi.org/10.1007/978-0-387-74759-0_662 
17. Ermoliev Y., Hordijk L. Global changes: facets of robust decisions. In: Coping with uncertainty, modeling and policy issues, Eds K. Marti, Y. Ermoliev, M. Makowski, G. Pflug, 4—28 (Springer-Verlag, Berlin, 2006).
https://doi.org/10.1007/3-540-35262-7_1 
18. Fisher S. G., Woodmansee R. Issue paper on ecological recovery. In: Ecological risk assessment issue papers, 7, P. 1—54, EPA/630/ R-94/009 (Risk Assessment Forum, U. S. Environmental Protection Agency, Washington, DC, 1994).
19. Fourty T., Baret F., Jacquemoud S., et al. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote Sens. Environ., 56, 104—117 (1996).
https://doi.org/10.1016/0034-4257(95)00234-0 
20. Gamon J. A., Serrano L., Surfus J. S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia, 112, 492—501 (1997).
https://doi.org/10.1007/s004420050337 
21. Gao B. C. Normalized difference water index for remote sensing of vegetation liquid water from space. Proc. SPIE, 2480, 225—236 (1995).
https://doi.org/10.1117/12.210877 
22. Guha-Sapir D., Vos F., Below R., Ponserre S. Annual disaster statistical review 2010: the numbers and trends, 50 p. (Université catholique de Louvain — Centre for Research on the Epidemiology of Disasters, Brussels, 2011).
23. Huete A. R., Liu H., Batchily K., van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ., 59, 440—451 (1997).
https://doi.org/10.1016/S0034-4257(96)00112-5 
24. Jackson R. D., Slater P. N., Pinter P. J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sens. Environ., 15, 187—208 (1983).
https://doi.org/10.1016/0034-4257(83)90039-1
25. Jones R. G., Murphy J. M., Noguer M. Simulation of climate change over Europe using nested regional climate model. I. Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J Roy. Meteorol. Soc., 77, 1413—1449 (1996).
26. Kaufman Y. J., Tanre D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS. Remote Sens. Environ., 55, 65—79 (1996).
https://doi.org/10.1016/0034-4257(95)00193-X 
27. Krayenhoff van de Leur D. A. A study of non-steady groundwater flow with special reference to a reservoir coefficient. Ingenieur, 70, 87—94 (1958).
28. Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Meth. Enzymol., 148, 350—382 (1987).
https://doi.org/10.1016/0076-6879(87)48036-1 
29. O’Neill B., Ermoliev Y., Ermolieva T. Endogenous risks and learning in climate change decision analysis. In: Coping with uncertainty: Modeling and policy issues, Eds K. Marti, Y. Ermoliev, M. Makowski, G. Pflug. (Springer Verlag, Berlin, Heidelberg, New York, 2006).
https://doi.org/10.1007/3-540-35262-7_16 
30. O’Neill R. V., Gardner R. H., Barnthouse L. W., et al. Ecosystem risk analysis: a new methodology. Environ. Toxicol. Chem., 1, 167—177 (1982).
https://doi.org/10.1002/etc.5620010208 
31. Penuelas J., Baret F., Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reactance. Photosynthetica, 31, 221— 230 (1995).
32. Regulation (EU) No 911/2010 of the European Parliament and the Council on the European Earth monitoring programme (GMES) and its initial operations (2011 to 2013). Offic. J. Eur. Union, L 276/1— L 276/10 (20.10.2010).
33. Rodriguez-Iturbe I., Entekhabi D., Bras R. L. Nonlinear dynamics of soil moisture at climate scales. 1. Stochastic analysis. Water Resour. Res., 27, 1899— 1906 (1991).
https://doi.org/10.1029/91WR01035 
34. Smith E. P., Shugart H. H. Issue paper on uncertainty in ecological risk assessment. In: Ecological risk assessment issue papers, 8, 1—53, EPA/630/R-94/009 (Risk Assessment Forum, U. S. Environmental Protection Agency, Washington, DC, 1994).
35. The use of Earth observing satellites for hazard support: assessments & scenarios. CEOS / NOAA, 218 p. (2001).
36. Lyalko V. I., Kostyuchenko Y. V., Márton L., et al. EO capabilities for analysis of climate related socio-eco-logical risks: bioproductivity, desertification, and natural disasters. In: Using Satellite and In Situ Data to Improve Sustainability: Proc. Advanced Research Workshop, Kiev, June 9 — 12, 2009, 56—58 (Kiev, 2009).
37. Verma S. B., Sellers P. J., Walthall C. L., et al. Photosynthesis and stomatal conductance related to reflectance on the canopy scale. Remote Sens. Environ., 44, 103—116 (1993).
https://doi.org/10.1016/0034-4257(93)90106-8 
38. Kostyuchenko Yu. V., Kopachevsky I., Solovyov D., et al. Way to reduce the uncertainties on ecological consequences assessment of technological disasters using satellite observations. In: Robust Design — Coping with Hazards, Risk and Uncertainty: Proc. of the 4th International Workshop on Reliable Engineering Computing, March 3—5, 2010, Singapore, 765—776 (National University of Singapore, Singapore, 2010).