A case study of global ULF pulsations using data from space-borne and ground-based magnetometers and a SuperDARN radar

1Potapov, AS, 2Amata, E, 1Polyushkina, TN, 2Coco, I, 3Ryzhakova, LV
1Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
2Istituto di Fisica dello Spazio Interplanetario, I.N.A.F., Rome, Italy
3Irkutsk National Research Technical University, Irkutsk ,Russia
Kosm. nauka tehnol. 2011, 17 ;(6):54-67
https://doi.org/10.15407/knit2011.06.054
Publication Language: English
Abstract: 
On 21‒22 January 2005 global ULF pulsations in the Pc5 range were observed in the Earth’s magnetosphere. The event took place during a compact high velocity stream of the solar wind, which produced a moderate magnetospheric storm and was characterised by mainly positive values of the interplanetary magnetic field Bz component and by dense plasma. To study the wave field structure of the ULF oscillations during this event we used magnetometer data from the GOES-10 and GOES-12 geostationary satellites, line of sight velocity data from the Kodiak SuperDARN radar, and magnetic measurements from INTERMAGNET observatories. In order to analyse the wave structure along a magnetic field line, GOES measurements were compared with those of ground stations closest to the GOES magnetic foot prints, while the Kodiak measurements were compared with magnetic field data from two INTERMAGNET stations, College and Shumagin, which were located within the Kodiak field of view or very close to it. The study shows a good correspondence and even coherence for some frequency components between pulsations observed near the top of a field line and at its foot and, to a lesser extent, between Kodiak line of sight velocities and conjugated magnetic measurements.
Keywords: magnetosphere, plasma, radar, ULF pulsations
References: 
1. Allan W., Poulter E. M., Glassmeier K.-H., Nielsen E. Ground magnetometer detection of a large-m Pc5 pulsation observed with the STARE radar. J. Geophys. Res., 88, 183—188 (1983).
https://doi.org/10.1029/JA088iA01p00183
2. Belakhovsky V. B., Pilipenko V. A. Generation of Pc5 pulsations in magnetic field and particle fluxes at the recovery phase of the 31 October 2003 magnetic storm. Geomagn. Aeronomy, 50 (2010) [in Russian].
3. Bendat J. S., Piersol A. G. Random data: Analysis and measurement procedures, 2nd edition. (John Wiley, New York, 1986).
4. Chisham G., Mann I. R. A Pc5 ULF wave with large azi-muthal wavenumber observed within the morning sector plasmasphere by Sub-Auroral Magnetometer Network. J. Geophys. Res., 104, P. 14.717 (1999).
5. Chisham G., Lester M., Milan S. E., et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surveys in Geophysics, 28, 33— 109 (2007).
https://doi.org/10.1007/s10712-007-9017-8
6. Dungey J. W. Electrodynamics of the outer atmosphere. Proceedings of the Ionosphere. (The Physical Society of London, London, 1955).
7. Fenrich F. R., Waters C. L., Connors M., Bredeson C. Ionospheric signatures of ULF waves: passive radar techniques. Magnetospheric ULF Waves: Synthesis and New Directions: AGU Geophysical Monograph, V. 169 (2006).
8. Gogatishvili Ia. M. Appearance of long-period pulsations at middle latitudes. Geomagnetism and Aeronomy, 14, 658—660 (1974).
9. Greenwald R. A., Bristow W. A., Sofko G. J., et al. Super dual auroral radar network radar imaging of dayside high-latitude convection under northward interplanetary magnetic field: toward resolving the distorted two-cell versus multicell controversy. J. Geophys. Res., 100, 19661—19674 (1995).
https://doi.org/10.1029/95JA01215
10. Higbie P. R., Baker D. N., Zwickl R. D., et al. The global Pc 5 event of November 14—15. J. Geophys. Res., 87, 2337—2345 (1982).
https://doi.org/10.1029/JA087iA04p02337
11. Hughes W. J., Southwood D. J. The screening of micropulsation signals by the atmosphere and ionosphere. J. Geophys. Res., 81, P. 3234 (1976).
https://doi.org/10.1029/JA081i019p03234
12. Liu Y. H., Fraser B. J., Liu R. Y., Ponomarenko P. V. Conjugate phase studies of ULF waves in the Pc5 band near the cusp. J. Geophys. Res., 108A (7), P. 1274 (2003).
https://doi.org/10.1029/2002JA009336
13. Kepko L., Spence H. E., Singer H. J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett., 29, P. 39 (2002).
https://doi.org/10.1029/2001GL014405
14. Kessel R. L., Mann I. R., Fung S. F., et al. Correlation of Pc5 wave power inside and outside the magnetosphere during high speed streams. Ann. geophys., 22, 629—641 (2004).
https://doi.org/10.5194/angeo-22-629-2004
15. Kivelson M. G., Pu Z. Y. The Kelvin-Helmholtz instability on the magnetopause. Planet. Space Sci., 32, 1335—1341 (1984).
https://doi.org/10.1016/0032-0633(84)90077-1
16. Mathie R. A., Mann I. R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J. Geophys. Res., 106, 29783—29796 (2001).
https://doi.org/10.1029/2001JA000002
17. Mathie R. A., Mann I. R., Menk F. W., Orr D. Pc5 ULF pulsations associated with waveguide modes observed with the IMAGE magnetometer array. J. Geophys. Res., 104, 7025—7036 (1999).
https://doi.org/10.1029/1998JA900150
18. Motoba T., Kikuchi T., Lühr H., et al. Global Pc5 caused by a DP 2-type ionospheric current system. J. Geophys. Res., 107A (2), P 1032 (2002).
19. Pokhotelov O. A., Pilipenko V. A., Amata E. Drift anisotropy instability of a finite-beta magnetospheric plasma. Planet. Space Sci., 33, 1229—1241 (1985).
https://doi.org/10.1016/0032-0633(85)90001-7
20. Potapov A., Guglielmi A., Tsegmed B., Kultima J. Global Pc5 event during 29—31 October 2003 magnetic storm. Adv. Space Res., 38, 1582—1586 (2006).
https://doi.org/10.1016/j.asr.2006.05.010
21. Potapov A. S., Polyushkina T. N. Evidence for direct penetration of the ULF waves from the solar wind and their possible contribution to acceleration of the radiation belt electrons. Solnechno-Zemnaya Fizika, 15, 28—34 (2010) [in Russian].
22. Ruohoniemi J., Greenwald R., Baker K. B., Samson J. HF radar observations of Pc 5 field line resonances in the midnight/early morning MLT sector. J. Geophys. Res., 96, 15697—15710 (1991).
https://doi.org/10.1029/91JA00795
23. Samson J., Greenwald R., Ruohoniemi J., et al. Magnetometer and radar observations of magnetohydrodynamic cavity modes in the Earth’s magnetosphere. Canad. J. Phys., 69, 929—937 (1991).
https://doi.org/10.1139/p91-147
24. Sarris T., Li X., Singer H. J. A long-duration narrowband Pc5 pulsation. J. Geophys. Res., 114, A01213 (2009).
25. Takahashi K., Fennell J. F., Amata E., Higbie P. R. Field-aligned structure of the storm time Pc 5 wave of November 14–15, 1979. J. Geophys. Res., 92, 5857—5864 (1987).
https://doi.org/10.1029/JA092iA06p05857
26. Villante U., Francia P., Vellante M., et al. Long-period oscillations at discrete frequencies: A comparative analysis of ground, magnetospheric, and interplanetary observations. J. Geophys. Res., 112, A04210 (2007).
27. Walker A. D. Excitation of field line resonances by MHD waves originating in the solar wind. J. Geophys. Res., 107A (12), P. 1481 (2002).
https://doi.org/10.1029/2001ja009188
28. Woch J., Kremser G., Rorth A., et al. Curvature-driven drift mirror instability in the magnetosphere. Planet. Space Sci., 36, 383—393 (1988).
https://doi.org/10.1016/0032-0633(88)90126-2
29. Wright A. N., Rickard G. J. A numerical study of resonant absorption in a magnetohydrodynamic cavity driven by a broad-band spectrum. Astrophys. J., 444, 458—470 (1995).
https://doi.org/10.1086/175620
30. Ziesolleck C. W. S., Chamalaun F. H. A two-dimensional array study of low-latitude Pc5 geomagnetic pulsations. J. Geophys. Res., 98, 13703—13713 (1993).
https://doi.org/10.1029/93JA00637
31. Ziesolleck C. W. S., McDiarmid D. R. Auroral latitude field Pc5 field line resonances: quantized frequencies, spatial characteristics, and diurnal variation. J. Geophys. Res., 99, 5817—5830 (1994).
https://doi.org/10.1029/93JA02903
32. Ziesolleck C. W. S., Fenrich F. R., Samson J. C., McDiarmid D. R. Pc5 field resonance frequencies and structure observed by SuperDARN and CANOPUS. J. Geophys. Res., 103, 11,771—11,785 (1998).