A procedure for integrated assessment of landscape fire risk using remote sensing data
Heading:
1Kostyuchenko, Yu.V, 2Yushchenko, MV, 3Kopachevsky, IM, 4Levynsky, S 1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 3State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 4Space Research Centre of the Polish Academy of Sciences, Wroclaw, Poland |
Kosm. nauka tehnol. 2011, 17 ;(6):30-44 |
https://doi.org/10.15407/knit2011.06.030 |
Publication Language: Ukrainian |
Abstract: We propose an approach to the assessment of landscape fire risk which allows one, within the framework of a comprehensive methodology, to take into account the impact of different components, such as traditional factors causing emergencies in a region, long-term climate and environmental changes, changes in meteorological parameters, and changes in regional ecosystems and nature management (which reflected, in particular, on the dynamics of natural fuels). We propose in direct form an equation for variability of meteorological conditions as well as an analysis of natural fuel accumulation and its dynamics properties. The relationship is analyzed between variables of basic equations of the risk model and satellite indicators that can be used in model calculations. A list of the most suitable existing indicators is created. We propose to take into account the probability of false interpretation of remote sensing data in analyzing the complex risk of landscape fires. The integrated approach proposed includes also air pollution risk and social risk connected with landscape fires. Our results can be used for the development of a comprehensive procedure for multi-term (including long-term) regional fire risk assessment.
|
Keywords: ecosystems, landscape fire, meteorological parameters |
References:
1. Alymov V. T., Tarasova N. P. Man-made risks. Analysis and evaluation, 118 p. (IKTs «Akademkniga», Moscow, 2006) [in Russian].
2. Elokhin A. N., Bodrikov O. V., Ulyanov S. V. Methodology of complex assessment of natural and man-caused risks for the population of Russian regions. Problemy bezopasnosti pri chrezvychajnyh situacijah, 3, 3 — 10 (1996) [in Russian].
3. Lisichenko G. V., Zabulonov Yu. L., Khmil G. A. Natural, technological and environmental risks: analysis, valuation, management, 541 p. (Naukova dumka, Kyiv, 2008) [in Ukrainian].
4. Methods of predicting the extent of the infection potent toxic substances in case of accidents (destruction) on chemically hazardous objects and transport: Guidance document RD 52.04.253-90. (Gidrometeoizdat, Leningrad, 1990) [in Russian].
5. Perry S. G. Model of diffusion of EPA for complex relief: structure and characteristics. Intern. Conf. WMO Modeling of Air Pollution and its Applications, 14—15 (Gidrometeoizdat, Leningrad, 1986) [in Russian].
6. Porter U. Modern Foundations of System Theory, 556 p. (Nauka, Moscow, 1971) [in Russian].
7. Tikhonov A. N., Samarskii A. A. Equations of mathematical physics, 314 p. (Gostehizdat, Moscow, 1953) [in Russian].
8. Glushkov V. M. (Ed.) Encyclopedia of Cybernetics, Vol. 2, 620 p. (Gl. red. Ukr. sov. jencikl., Kiev, 1974) [in Russian].
9. Albini F. A. Estimating wildfire behavior and effects. Gen. Tech. Rep. INT-30. Ogden, U T: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 92 p. (1976).
10. Anthes R. A., Hsie E. Y., Kuo Y. H. Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Techn. Note, Natl Cent. For Atmos. Res., NCAR/TN-282+STR, 70 p. (Boulder, Colorado, 1987).
11. Balbi J. H., Santoni P. A., Dupuy J. L. Dynamic modelling of fire spread across a fuel bed. Int. J. Wildland Fire, 9 (4), 275—284 (1998).
https://doi.org/10.1071/WF00005
https://doi.org/10.1071/WF00005
12. Bartell S. M., Gardner R. H., O’Neill R. V. Ecological risk estimation. (Lewis Publs, Boca Raton, FL, 1992).
13. Ceccato P., Flasse S., Tarantola S., et al. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ., 77, 22— 33 (2001).
https://doi.org/10.1016/S0034-4257(01)00191-2
https://doi.org/10.1016/S0034-4257(01)00191-2
14. Climate Change 2001. The scientific basis. Report of the intergovernmental panel on climate change, 83 p. (Univ. Press, Cambridge, 2001).
15. Daughtry C. S. T., Hunt Jr. E. R., McMurtrey III J. E. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ., 90, 126— 134 (2004).
https://doi.org/10.1016/j.rse.2003.10.023
https://doi.org/10.1016/j.rse.2003.10.023
16. Devore J. L. Probability and statistics for engineering and the sciences, 672 p. (Brooks & Cole Publ., Monterrey, 1987).
17. Dozier J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ., 11, 221—229 (1981).
https://doi.org/10.1016/0034-4257(81)90021-3
https://doi.org/10.1016/0034-4257(81)90021-3
18. Ermoliev Y. Stochastic quasigradient methods: applications. Encyclopedia of Optimization, Eds C. Floudas, P. Pardalos, 3801—3807 (Springer Verlag, New York, 2009).
https://doi.org/10.1007/978-0-387-74759-0_662
https://doi.org/10.1007/978-0-387-74759-0_662
19. Ermoliev Y., Hordijk L. Global changes: facets of robust decisions. Coping with uncertainty, modeling and policy issues, Eds K. Marti, Y. Ermoliev, G. Pflug, M. Makowski, 4—28 (Springer-Verlag, Berlin, 2006).
20. Ermoliev Yu., Detlof von Winterfeldt. Risk, security and robust solutions. IIASA Interim Report, IR-10-013, IIASA, 41 p. (2010).
21. Farr T. G., Rosen P. A., Caro E., et al. The shuttle radar topography mission. Revs Geophys., 45, RG2004 (2007). doi:10. 1029/2005RG000183
22. Fisher S. G., Woodmansee R. Issue paper on ecological recovery. Ecological risk assessment issue papers, 7, 1—54, EPA/630/ R-94/009 (Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, DC, 1994).
23. Flannigan M. D., Vonder Haar T. H. Forest fire monitoring using NOAA satellite AVHRR. Can. J. Forest Res., 16, 975—982 (1986).
https://doi.org/10.1139/x86-171
https://doi.org/10.1139/x86-171
24. Fourty T., Baret F., Jacquemoud S., et al. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote Sens. Environ., 56, 104—117 (1996).
https://doi.org/10.1016/0034-4257(95)00234-0
https://doi.org/10.1016/0034-4257(95)00234-0
25. Gamon J. A., Serrano L., Surfus J. S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia, 112, 492—501 (1997).
https://doi.org/10.1007/s004420050337
https://doi.org/10.1007/s004420050337
26. Gao B. C. Normalized difference water index for remote sensing of vegetation liquid water from space. Proc. SPIE, 2480, 225—236 (1995).
https://doi.org/10.1117/12.210877
https://doi.org/10.1117/12.210877
27. Giglio L., Descloitres J., Justice C. O., Kaufman Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 87, 273—282 (2003).
https://doi.org/10.1016/S0034-4257(03)00184-6
https://doi.org/10.1016/S0034-4257(03)00184-6
28. Giglio L., Kendall J. D., Justice C. O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens., 20, 1947— 1985 (1999).
https://doi.org/10.1080/014311699212290
https://doi.org/10.1080/014311699212290
29. Giglio L., Loboda T., Roy D. P., et al. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ., 113, 408—420 (2009).
https://doi.org/10.1016/j.rse.2008.10.006
https://doi.org/10.1016/j.rse.2008.10.006
30. Heo J., Park J. S., Song Y.-S., et al. An integrated methodology for estimation of forest fire-loss using geospatial information. Environ Monit Assess., 144, 285—299 (2008).
31. Huete A. R., Liu H., Batchily K., van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ., 59, 440—451 (1997).
https://doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.1016/S0034-4257(96)00112-5
32. Hunsaker C. T., Graham R. L., Suter G. W., et al. Assessing ecological risk on a regional scale. Environ Manage., 14, 325—332 (1990).
https://doi.org/10.1007/BF02394200
https://doi.org/10.1007/BF02394200
33. Jackson R. D., Slater P. N., Pinter P. J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sens. Environ., 15, 187—208 (1983).
https://doi.org/10.1016/0034-4257(83)90039-1
https://doi.org/10.1016/0034-4257(83)90039-1
34. Jones R. G., Murphy J. M., Noguer M. Simulation of climate change over Europe using nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteorol. Soc., 77, 1413—1449 (1996).
35. Kaufman Y. J., Justice C. O., Flynn L. P., et al. Potential global fire monitoring from EOS MODIS. J. Geophys. Res., 103, 215—238 (1998).
https://doi.org/10.1029/98JD01644
https://doi.org/10.1029/98JD01644
36. Kaufman Y. J., Tanre D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS. Remote Sens. Environ., 55, 65—79 (1996).
https://doi.org/10.1016/0034-4257(95)00193-X
https://doi.org/10.1016/0034-4257(95)00193-X
37. Kostyuchenko Yu. V. Coupled modeling, “In-field, and Earth observation data analysis for emergency response optimization”. Paper presented at Coping with Uncertainty: Robust Decisions IFIP/IIASA/GAMM Workshop Proc., 17 p. (Luxenburg, Austria, Dec., 2007).
38. Kostyuchenko Yu., Bilous Yu. Long-term forecasting of natural disasters under projected climate changes in Ukraine. Regional aspects of climate-terrestrial-hydrologic interactions in non-boreal eastern Europe, Ed. by P. Ya. Groisman, S. V. Ivanov, 95— 102 (Springer, 2009).
https://doi.org/10.1007/978-90-481-2283-7_11
https://doi.org/10.1007/978-90-481-2283-7_11
39. Kostyuchenko Yu. V., Kopachevsky I., Solovyov D., et al. Way to reduce the uncertainties on ecological consequences assessment of technological disasters using satellite observations. in: Robust Design — Coping with Hazards, Risk and Uncertainty: Proc. of the 4th International Workshop on Reliable Engineering Computing (March 3— 5, 2010, Singapore), 765—776 (National University of Singapore, Singapore, 2010).
40. Kostyuchenko Yu., Márton L., Yuschenko M., et al. Trans-boundary socio-ecological safety assessment: sustainability toward anthropogenic hazards and bioproductivity degradation. Robust Design — Coping with Hazards, Risk and Uncertainty: Proc. 4th Int. Workshop on Reliable Engineering Computing, March 3 — 5, 2010, 777— 797 (National University of Singapore, Singapore, 2010).
41. Ludwig J. A., Reynolds J. F. Statistical ecology, 337 p. (Wiley-Interscience, New York, 1988).
42. Lyalko V. I., Kostyuchenko Yu. V., Márton L., et al. EO capabilities for analysis of climate related socio-ecological risks: bio-productivity, desertification, and natural disasters. Using Satellite and In Situ Data to Improve Sustainability: Proc. of Advanced Research Workshop (June 9—12, 2009, Kiev), 56—58 (Kiev, 2009).
43. Manolakos E., Manatakis D., Xanthopoulos G. Temperature field modeling and simulation of wireless sensor network behavior during a spreading wildfire. Proc. of 16th European Signal Proc. Conf. (EUSIPCO 2008), August 25—29, 2008, Lausanne, Switzerland, 5 p. (Lausanne, 2008).
44. Martin M. P., Ceccato P., Flasse S., Downey I. Fire detection and fire grows monitoring using satellite data. Remote Sensing of Large Wildfires, Ed. by E. Chuvieco, 101—122 (Springer-Verlag, Berlin, 1999).
https://doi.org/10.1007/978-3-642-60164-4_6
https://doi.org/10.1007/978-3-642-60164-4_6
45. Olabarria J. R. G. Integrating fire risk into forest planning: Academic Dissertation, Dissertationes Forestales 23, University of Joensuu, 36 p. (The Finnish Society of Forest Science, Helsinki, 2006).
46. O’Neill B., Ermoliev Y., Ermolieva T. Endogenous risks and learning in climate change decision analysis. Coping with uncertainty: modeling and policy issues, Eds K. Marti, Y. Ermoliev, M. Makowski, G. Pflug, 283— 289 (Springer, Berlin, Heidelberg, New York, 2006).
47. O’Neill R. V., Gardner R. H., Barnthouse L. W., et al. Ecosystem risk analysis: a new methodology. Environ Toxicol Chem., 1, 167—177 (1982).
https://doi.org/10.1002/etc.5620010208
https://doi.org/10.1002/etc.5620010208
48. Pastor E., Zárate L., Planas E., Arnaldos J. Mathematical models and calculation systems for the study of wildland fire behaviour. Progr. Energy and Combustion Sci., 29, 139—153 (2003).
https://doi.org/10.1016/S0360-1285(03)00017-0
https://doi.org/10.1016/S0360-1285(03)00017-0
49. Penuelas J., Baret F., Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reactance. Photosynthetica, 31, 221— 230 (1995).
50. Regulation (EU) N 911/2010 of the European Parliament and the Council on the European Earth monitoring programme (GMES) and its initial operations (2011 to 2013). Offic. J. Eur. Union, L 276/1— L 276/10 (20.10.2010).
51. Richards G. D. A general mathematical framework for modeling two-dimensional wildland fire spread. Int. J. Wildland Fire, 5, 63—72 (1995).
https://doi.org/10.1071/WF9950063
https://doi.org/10.1071/WF9950063
52. Rothermel R. C. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Forest Service, Intermountain Forest and Range Experiment Station, Ogden (UT), 40 p. (1972).
53. Salvador R., Piñol J., Tarantola S., Pla E. Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands. Ecol. Model., 136, 175—189 (2001).
https://doi.org/10.1016/S0304-3800(00)00419-1
https://doi.org/10.1016/S0304-3800(00)00419-1
54. Serrano L., Penuelas J., Ustin S. L. Remote sensing of Nitrogen and Lignin in mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens. Environ., 81, 355—364 (2002).
https://doi.org/10.1016/S0034-4257(02)00011-1
https://doi.org/10.1016/S0034-4257(02)00011-1
55. Sims D. A., Gamon J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ., 81, 337—354 (2002).
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00010-X
56. Smith E. P., Shugart H. H. Issue paper on uncertainty in ecological risk assessment. Ecological risk assessment issue papers, Vol. 8, 1—53, EPA/630/R-94/009 (Risk Assessment Forum, U. S. Environmental Protection Agency, Washington, DC, 1994).
57. Stroppiana D., Pinnock S., Gregoire J.-M. The global fire product: daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. Iner. J. Remote Sens., 21, 1279—1288 (2000).
https://doi.org/10.1080/014311600210173
https://doi.org/10.1080/014311600210173
58. Suter G. W., Vermeire T., Munns Jr. W. R., Sekizawa J. Framework for the integration of health and ecological risk assessment. Hum. Ecol. Risk Assess., 9, 281—301 (2003).
https://doi.org/10.1080/713609865
https://doi.org/10.1080/713609865
59. Techniques and decision making in the assessment of of-site consequences of an accident in a nuclear facility. Safety ser., No. 86, 185 p. (1987).
60. The use of Earth observing satellites for hazard support: assessments & scenarios. CEOS / NOAA, 218 p. ( 2001).
61. U.S. EPA. Considerations for developing alternative health risk assessment approaches for addressing multiple chemicals, exposures and effect (external review draft), 384 p. (EPA/600/R-06/014A) (U. S. Environmental Protection Agency, Washington, D. C., 2006).
62. U.S. EPA. Exposure factors handbook, 712 p. (EPA/ 600/8-89/043 U. S. Environmental Protection Agency) (Environmental Protection Agency, Washington, D. C., 1996).
63. Wang L., Qu J. J. NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett., L20405, 34 p. (2007).
64. Wang P. K. G. Control of distributed parameter systems. Advances in Control Systems, Vol. I, 216 p. (Academ. Press, New York, 1964).
65. Weaver J., Lindsey D., Bikos D. Fire detection using GOES rapid scan imagery. Weather and Forecasting, 19, 496—510 (2004).
https://doi.org/10.1175/1520-0434(2004)019<0496:FDUGRS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2004)019<0496:FDUGRS>2.0.CO;2
66. Wu Y., Sklar F. H., Gopu K., Rutchey K. Fire simulations in the everglades landscape using parallel programming. Ecol. Model., 93, 113—124 (1996).