Mathematical model of the rocket motion relative to a mobile launcher

1Degtyareva, ЕА, 1Novykov, OV
1Yuzhnoye State Design Office, Dnipro, Ukraine
Space Sci. & Technol. 2019, 25 ;(3):03-15
Publication Language: Russian
Recently, due to geopolitical and economic reasons, it has become necessary to enhance the types of launches of existing launch vehicles. The rocket launches are most advantageous to carry out in the vicinity of Earth equator. The most effective launches options are provided on launching complexes located on floating sea platforms (LP). But restrained LP dimensions do not allow the deployment of the launching complex equipment at the sufficient distance from each other. Besides, the launcher continuously moves in all degrees of freedom because of sea rolling. Hence, one of the key tasks is to ensure the collision-free launch and minimize the area of the impact of the propulsion system (PS) jet on the elements of the mobile launching complex during rocket flight on the initial segment of a trajectory.
         Here, we propose the mathematical model of the controlled disturbed motion of a rocket relative to mobile launcher. In addition, we present models for determining the coordinates of characteristic point located on the rocket relative to launcher elements and coordinates of combustion chambers’ jet traces on the surface of the launch pad during rocket flight on the initial trajectory leg. The proposed mathematical models take into account the ensemble of all most significant disturbing factors and allow modeling the disturbed motions of the rocket, floating launcher and determining relative positions of characteristic points located on them. These models were used when developing and verifying the new control law for the rocket launched in the conditions of sea rolling and in the post-flight analysis of Zenit-3SL rockets launched from the sea launch platform.
Keywords: mathematical model, rocket flight on the initial trajectory leg
1. Abagryan К. А., Rapoport I. М. (1969). Rocket Dynamics. Мoskow: Mashinostroyeniye [in Russian].
2. Appazov R. F., Lavrov S. S., Mishin V. P. (1966). Long-Range Guided Missiles Ballistics. Мoskow: Nauka [in Russian].
3. Hemsh М., J. Nilsen (1989). Rocket Aerodynamics: in 2 books. Book 2. Methods of Aerodynamic Analysis. Мoskow: Mir [in Russian].
4. Bukhgolts N. N. (1965). Basic Course of Theoretical (Parts 1-2). Part 2: manual for universities. Мoskow: Nauka [in Russian].
5. Vermishev Y. К. (1968). Fundamentals of Rocket Control. Мoskow: Military Publishing House of the USSR Ministry of Defense [in Russian].
6. Mezhin V. S. (Trans) (1974). Wind Effects on Launch Vehicles. Leading Department of Scientific—Technical Information № 4. The Advisory Group for Aerospace research and Development of NATO [in Russian].
7. Gerasyuta N. F., Novykov A. V., Beletskaya N. G. (1998). Flight Dynamics. Basic Tasks of Dynamic Designing: Dnepropetrovsk: Ministry of Industrial Policy of Ukraine, Yuzhnoye State Design Office. Ministry of Education of Ukraine, Dnepropetrovsk State University. Dnepropetrovsk [in Russian].
8. Mishin V. P. (Eds.) (1990). Rocket Dynamics. Мoskow: Mashinostroyeniye,. 463 p. [in Russian].
9. Zarubin V. S. (2003). Mathematical Modelling in Engineering. Мoskow: Bauman MGTU Publishing Office [in Russian].
10. Igdalov I. M., Kuchma L. D., Polyakov N. V., Sheptun Y. D. (2004). Rocket as Control Object. Dnepropetrovsk: ARTPRESS [in Russian].
11. Igdalov I. M., Kuchma L. D., Polyakov N. V., Sheptun Y. D. (2007). Launch Vehicles and Space Rocket Stages as Control Objects. Dnepropetrovsk: DNU Publishing Office [in Ukrainian].
12. Igdalov I. M., Kuchma L. D., Polyakov N. V., Sheptun Y. D. (2010). Dynamic Designing of Rockets. Tasks of Rockets and their Space Stages Dynamics. S. N. Konyukhov (Eds). Dnepropetrovsk: Dnepropetrovsk National University Publishing Office [in Russian].
13. Solodov A. V. (Eds.) (1969). Engineering Guide on Space Hardware. Мoskow: Voyenizdat [in Russian]
14. Kiselyov S. P. (1976). Physical Principles of Rocket Aerodynamics.Мoskow: Voyenizdat [in Russian].
15. Kolesnikov K. S. (2003). Rocket Dynamics. Мoskow: Mashinostroyeniye [in Russian].
16. Lebedev А. А., Gerasyuta N. F. (1970). Rocket Ballistics.Мoskow: Mashinostroyeniye [in Russian].
17. Letov А. М. (1969). Flight Dynamics and Control. Мoskow:Nauka [in Russian].
18. Ostoslavsky I. V., Strazheva I. V. (1969). Flight Dynamics. Flying Vehicles Trajectories. Мoskow: Mashinostroyeniye [in Russian].
19. Pugachyov V. S., Kazakov I. E., Gladkov D. I. (1965). Rocket Control Systems and Flight Dynamics. V. S. Pugachyov, N. E. Zhukovsky (Eds). VVIA Printing Office [in Russian].
20. Tarasik V. P. (2004). Mathematical Modelling of Technical Systems. Мn.: DesignPRO [in Russian].
21. Feodosyev V. I. (1979). Principles of Rocket Flight Technique.Мoskow: Nauka [in Russian].