Investigation of thermal dimensional stability of large-size structure made of composite materials

1Masley, VM, 1Kavun, VV, 1Shchudro, AP, 2Sokhach, Yu.V, 2Kudrevatykh, ОT, 2Rozhkovskiy, VF, 1Moskalev, SI, 1Dobrushyna, MG, 1Kulyk, AS
1Yuzhnoye State Design Office, Dnipro, Ukraine
2Oles Honchar Dnipro National University, Dnipro, Ukraine
Space Sci. & Technol. 2019, 25 ;(3):32-39
Publication Language: Russian
The development of spacecrafts imposes high demands on the stability of the angular position of the optical sensor (scanner) relative to star tracker of navigation system under the thermal effect during a flight. On the ground, the stability of the scanner angular position in case of thermal action on the spacecraft load-bearing structure is confirmed experimentally at the temperature that is close to the temperature of the scanner adjustment and is similar to operating temperature. Thereby, an actual problem is the development of a method of experimental verification of dimensional stability of spacecraft load-bearing structure during the thermal action.
         The purpose of the study is to develop such a method for the spacecraft monoblock based on a large-scale load-bearing structure made of composite materials. The experimental control of the position of scanners’ and star trackers’ seats is usually made using laser equipment. We present the method of experimental verification of dimensional stability of load-bearing structure under the thermal effect. The composite material of the structure is a carbon-filled plastic. The results of tests of the monoblock load-bearing structure confirm that the requirements for the stability of angular positions of scanners and star trackers fixed inside the optical monoblock were met under the thermal action. The proposed method allows for the study of dimensionally stable large-scale load-bearing structures under the thermal action using specially devised and tested laser/optical devices, as well as scanner and star trackers simulators.
Keywords: laser/optical device, load-bearing structure, scanner simulator, spacecraft, star tracker simulator, thermal dimensional stability
1. Afanasev V. A., Zhilkin A. M., Usov V. S. (1982). Auto Collimation Instruments. Moskva: Nedra. 144 p.
2. Bazykin S. N. (2014). Information Measuring Systems based on interferometers. Vasileva V. A. (Ed.). Penza: Izdvo PGU. 132 p.
3. Dobrushina M. G., Kavun V. V., Galaburda D. A., Maslej V. N., Moskalev S. I., Boklagova I. N., Kushnirenko S. I. (2017). Aspects of developing dimensionally stable high resolution scanner designs. Tehnologicheskie sistemy, 3(80), 87—92.
4. Kavun V. V., Kudrevatyh A. T., Kulik A. S., Moskalev S. I., Sohach Yu. V., Shudro A. P. (2017). Ensuring thermal stability of composite structures using laser-optical devices. 6-ya mezhdunar. konf. Kosmicheskie tehnologii: nastoyashee i budushee». Dnipro.
5. Konyahin I. A., Moiseeva A. A., Hoang Van Fong (2016). Optoelectronic auto-collimator for two-coordinate angular measurements. Izv. vuzov. Priborostroenie, 59(7), 563—570
6. Kudreva tyh A. T., Kuinn N. A., Dergal E. S. (2018). Modeling the process of measuring image shift with subpixel accuracy.. Stroitelstvo, materialovedenie, mashinostroenie,Vyp. 106, 83—89.
7. Larionova O. O., Rozhkovskij V. F., Sohach Yu. V. (2003). Holographic technology in the aviation-cosmic technology. Malajchuka V. P. (Ed). Dnipro: RVV DNU, 280 p.
8. Non-Destructive Testing: Reference: in 7 volumes (2004). V.V. Klyueva (Ed). V. 6: Book 2: Opticheskij kontrol. Moskva: Mashinostroenie, 832 p.