Ozone distribution in the Antarctic region from the data of 30-year satellite measurements

1Grytsai, AV, 1Evtushevsky, OM, 2Milinevsky, GP, 1Grytsai, ZI
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(1):20-27
https://doi.org/10.15407/knit2010.01.020
Publication Language: Ukrainian
Abstract: 
Some features of the Antarctic ozone distribution and its variations are studied for a 30-year period (1979‒2008) of satellite measurements made with the TOMS and OMI satellite spectrometers. The changes of the ozone hole parameters are analysed and multi-year variations of the quasi-stationary planetary wave characteristics in the atmosphere over the Antarctic region are studied. The conclusion on stopping both the ozone level diminution and the ozone hole area increase since the late 1990s is made from the analysis of trends in the ozone hole characteristics.
            It is shown that the quasi-stationary waves cause the following: steady zonal asymmetry of the ozone distribution with ozone hole displacement relatively the South Pole into Atlantic longitudinal sector; a systematical eastward shift of the low ozone level region which is statistically reliable in the latitude range from 50 to 80° S and which reached 50° by longitude during the last 30 years. At the same time, a long-term change of the maximum position is insignificant. The retention of the regular eastward shift of quasi-stationary wave minimum during three decades is indicative of the existence of a dynamical factor changing the ozone hole asymmetry independently on tendencies in the ozone levels.
Keywords: ozone hole, planetary waves, satellite measurements
References: 
1. Grytsai A. V., Evtushevsky A. M., Milinevsky G. P., et al. Longitudinal distribution of total ozone content in edge region of Antarctic stratospheric vortex. Kosm. nauka tehnol., 11 (5-6), 5–11 (2005) [in Ukrainian].
2. Allen D. R., Bevilacqua R. M., Nedoluha G. E., et al. Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett., 30 (12) (2003).
.https://doi.org/10.1029/2003GL017117
3. Bhartia P. K., Wellemeyer C. W. TOMS V8 Algorithm Theoretical Basis Document, 23 p. (2004). Available: http://toms. gsfc.nasa.gov/version8/v8toms_atbd.pdf
4. Bodeker G. E., Shiona H., Eskes H. Indicators of Antarctic ozone depletion. Atmos. Chem. Phys., 5 (10), 2603–2615 (2005).
https://doi.org/10.5194/acp-5-2603-2005
5. Crook J. A., Gillett N. P., Keeley S. P. E. Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys. Res. Lett., 35, L07806 (2008).
6. Farman J. C., Gardiner B. G., Shanklin J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 15, 207–210 (1985).
https://doi.org/10.1038/315207a0
7. Fioletov V. E., Labow G., Evans R., et al. Performance of the ground-based total ozone network assessed using satellite data. J. Geophys. Res., 113, D14313 (2008).
8. Grytsai A., Grytsai Z., Evtushevsky A., Milinevsky G. Interannual variability of planetary waves in the ozone layer at 65°S. Int. J. Remote Sensing, 26 (16), 3377–3387 (2005).
https://doi.org/10.1080/01431160500076350
9. Grytsai A., Grytsai Z., Evtushevsky A., et al. Zonal wave number 1–5 in planetary waves from the TOMS total ozone at 65 °S. Ann. Geophys., 23 (5), 1565–1573 (2005).
https://doi.org/10.5194/angeo-23-1565-2005
10. Grytsai A. V., Evtushevsky O. M., Agapitov O. V., et al. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25 (2), 361–374 (2007).
https://doi.org/10.5194/angeo-25-361-2007
11. Hio Y., Hirota I. Interannual variations of planetary waves in the Southern Hemisphere stratosphere. J. Met. Soc. Jap., 80 (4B), 1013–1027 (2002).
https://doi.org/10.2151/jmsj.80.1013
12. Lin P., Fu Q., Solomon S., Wallace J. M. Temperature trend patterns in Southern Hemisphere high latitudes: novel indicators of stratospheric change. J. Climate, 22 (23) (2009).
13. Neff W., Perlwitz J., Hoerling M. Observational evidence for asymmetric changes in tropospheric heights over Antarctica on decadal time scales. Geophys. Res. Lett., 35, L18703 (2008).
14. Perlwitz J., Pawson S., Fogt R. L., et al. Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714 (2008).
https://doi.org/10.1029/ 2008GL033317
15. Quintanar A. I., Mechoso C. R. Quasi-stationary waves in the Southern Hemisphere. Part I. Observational data. J. Climate, 8 (11), 2659–2672 (1995).
https://doi.org/10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2
16. Randel W. J. Global normal-mode Rossby waves observed in stratospheric ozone data. J. Atmos. Sci., 50 (3), 406–420 (1993).
https://doi.org/10.1175/1520-0469(1993)050<0406:GNMRWO>2.0.CO;2
17. Roscoe H. K., Shanklin J. D., Colwell S. R. Has the Antarctic vortex split before 2002? J. Atmos. Sci., 62 (3), 581–588 (2005).
https://doi.org/10.1175/JAS-3331.1
18. Salby M. L., Callaghan P. F. Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98D (2), 2715–2727 (1993).
https://doi.org/10.1029/92JD01814
19. Scientific assessment of ozone depletion: 2006, Report N 50 (World Meteorological Organization, Geneva, 2007).
20. Shepherd T. G. Large-scale atmospheric dynamics for atmospheric chemists. Chem. Rev., 103 (12), 4509–4531 (2003).
https://doi.org/10.1021/cr020511z 
21. Stolarski R. S., McPeters R. D., Newman P. A. The ozone hole of 2002 as measured by TOMS. J. Atmos. Sci., 62 (3), 716–720 (2005).
https://doi.org/10.1175/JAS-3338.1 
22. Turner J., Comiso J. C., Marshall G. J., et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502 (2009).
23. Weare B. C. Dynamical modes associated with the Antarctic ozone hole. Atmos. Chem. Phys., 9 (15), 5403–5416 (2009).
https://doi.org/10.5194/acp-9-5403-2009 
24. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res., 98D (5), 8873– 8882 (1993).
https://doi.org/10.1029/92JD02820 
25. Yang E.-S., Cunnold D. M., Newchurch M. J., et al. First stage of Antarctic ozone recovery. J. Geophys. Res., 113, D20308 (2008).
26. Zou H., Gao Y. Long-term variation in TOMS over 60– 70°S. Geophys. Res. Lett., 24 (18), 2295– 2298 (1997).