Space weather: the history of research and forecasting
Heading:
1Parnowski, AS, 2Yermolayev, Yu.I, 1Zhuk, IT 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine 2Space Research Institute of the Russian AS, Moscow, Russia |
Kosm. nauka tehnol. 2010, 16 ;(1):90-99 |
https://doi.org/10.15407/knit2010.01.090 |
Publication Language: Russian |
Abstract: We describe some aspects of the space weather problem. The history of the problem is outlined. The existing space weather forecasting methods are reviewed, their advantages and drawbacks are analysed and some ways for further development are proposed. In particular, taking into account the large-scale structure of the solar wind enables us to improve the prediction accuracy for the Earth’s magnetosphere and ionosphere state.
|
Keywords: magnetosphere, solar wind, space weather |
References:
1. Akasofu S.-I., Chapman S. Solar-Terrestrial Physics, Vols. 1-2 (Mir, Moscow, 1974-1975) [in Russian].
2.Gurfinkel Yu. I. Coronary Heart Disease and Solar Activity (Izd-vo «Jel'f-3», VINITI, Moscow, 2004) [in Russian].
3. Yermolaev Yu. I., Yermolaev M. Yu. Solar and interplanetary sources of geomagnetic storms: space weather aspects. Geophysical Processes and Biosphere, 8 (1), 5—35 (2009) [in Russian].
4. Yermolaev Yu. I., Yermolaev M. Yu., Lodkina I. G., Nikolaeva N. S. Statistical investigation of heliospheric conditions resulting in magnetic storms. Kosmicheskie Issledovaniia, 45 (1), 3 —11 (2007) [in Russian].
5. Zelenyj L. M., Veselovskij I. S. (Eds.) Plazma heliogeophysics. (Fizmatlit, Moscow, 2008) [in Russian].
6. Kremenetskij I. O., Cheremnykh O. K. Space weather: mechanisms and manifestations, 144 p. (Nauk. dumka, Kyiv, 2009) [in Ukrainian].
7. Parnowski A. S. Dst prediction using the linear regression analysis. Kosm. nauka tehnol., 14 (3), 48—54 (2008) [in Russian].
https://doi.org/10.15407/knit2008.03.048
https://doi.org/10.15407/knit2008.03.048
8. Parnowskiy A. S. Regression modeling and its application to the problem of prediction of space weather. Probl. Upravl. Inform., No. 3, 128—135 (2009) [in Russian].
9. Parnowski A. S. Generation, stability and range of their own small-scale cross-MHD disturbances in the inner magnetosphere of the Earth: Candidate’s thesis. (Manuscript) (Kyiv, 2006) [in Ukrainian].
10. Semeniv O. V., Sidorenko V. I., Shatokhina Yu. V., et al. Optimization Approach to Space Weather Prediction. Probl. Upravl. Inform., No. 4, 115 —130 (2008) [in Russian].
11. Figurovskij D. Electromagnetic pulse of a nuclear explosion and protection from it of radio electronic means. Zarubezh. voen. obozrenie, No. 8, 35 —41 (1989) [in Russian].
12. Cheremnykh O., Sidorenko V. I., Yatsenko V. Nonlinear dynamical-information magnetosphere models for space weather forecasting. Kosm. nauka tehnol., 14 (1), 77 —84 (2008) [in Russian].
https://doi.org/10.15407/knit2008.01.077
https://doi.org/10.15407/knit2008.01.077
13. Chizhevsky A. L. Physical Factors of the Historical Process. (Kaluga, 1924) [in Russian].
14. Chizhevsky A. L. On the influence of space causes on the activity of communication apparatuses. Zhizn' i tehnika svjazi, 12, 22 —31 (1925) [in Russian].
15. Chizhevskii A. L. Modification of Nervous Excitability under the influence of Perturbation in the External Physicochemical Environment. Russ.-Nemets. Med. Zh., No. 9, 501 —518 (1928) [in Russian].
16. Chizhevskii A. L. On the periodicity of the European Typhus recurrens. Russ.-Nemets. Med. Zh., No. 12, 685 —695 (1928) [in Russian].
17. Babayev E. S. Space weather and human health at the Earth’s surface:results of Azerbaijani studies. Geophys. Res. Abstracts, 9, 00798 (2007).
18. Balikhin M. A., et al. Terrestrial magnetosphere as a nonlinear resonator. Geophys. Res. Lett., 28 (6), 1123 —1126 (2001).
https://doi.org/10.1029/2000GL000112
https://doi.org/10.1029/2000GL000112
19. Ballatore P., Gonzalez W. D. On the estimates of the ring current injection and decay. Earth, Planets and Space, 55, 427 —435 (2003).
https://doi.org/10.1186/BF03351776
https://doi.org/10.1186/BF03351776
20. Borovsky J. E., Denton M. H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res., 111, A07S08 (2006).
https://doi.org/10.1029/2005JA011447
https://doi.org/10.1029/2005JA011447
21. Burton R. K., McPherron R. L., Russel C. T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res., 80, 4202 —4214 (1975).
https://doi.org/10.1029/JA080i031p04204
https://doi.org/10.1029/JA080i031p04204
22. Campbell W. H. Geomagnetic storms, the Dst ring-current myth and lognormal distributions. J. Atmos. and Terr. Phys., 58 (10), 1171 —1187 (1996).
https://doi.org/10.1016/0021-9169(95)00103-4
https://doi.org/10.1016/0021-9169(95)00103-4
23. Carrington R. C. Description of a Singular Appearance seen in the Sun on September 1. Mon. Notic. Roy. Astron. Soc., 20, 13 —15 (1859).
https://doi.org/10.1093/mnras/20.1.13
https://doi.org/10.1093/mnras/20.1.13
24. Cerrato Y., et al. Geomagnetic storms: their sources and a model to forecast Dst index. Lect. Notes and Essays in Astrophys., 131 —142 (2004).
25. Cid C., Saiz E., Cerrato Y. Physical models to forecast the Dst index: A comparison of results. Connecting Sun and Heliosphere: Proc. Solar Wind 11 – SOHO 16, Whistler, Canada, 12 –17 June, 2005, ESA SP-592, 116 –119 (2005).
26. Chapman S., Ferraro V. C. A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr., 36, 77 —97, 171 —186 (1931).
https://doi.org/10.1029/TE036i002p00077
https://doi.org/10.1029/TE036i002p00077
27. Chapman S., Ferraro V. C. A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr., 37, 147 —156 (1932).
https://doi.org/10.1029/TE037i002p00147
https://doi.org/10.1029/TE037i002p00147
28. Chapman S., Ferraro V. C. A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr., 38, 79 —96 (1933).
https://doi.org/10.1029/TE038i002p00079
https://doi.org/10.1029/TE038i002p00079
29. Chapman S., Ferraro V. C. A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr., 45, 245 —268 (1940).
https://doi.org/10.1029/TE045i003p00245
https://doi.org/10.1029/TE045i003p00245
30. Cheremnykh O. K., et al. Nonlinear dynamics and prediction for space weather. Ukr. J. Phys., 53 (5), 502 —505 (2008).
31. Cliver E. W., Kamide Y., Ling A. G. Mountains versus valleys: Semiannual variation of geomagnetic activity. J. Geophys. Res., 105, 2413 —2424 (2000).
https://doi.org/10.1029/1999JA900439
https://doi.org/10.1029/1999JA900439
32. Despirak I. V., et al. Development of substorm bulges during different solar wind structures. Ann. geophys., 27, 1951 —1960 (2009).
https://doi.org/10.5194/angeo-27-1951-2009
https://doi.org/10.5194/angeo-27-1951-2009
33. Dryer M., et al. Magnetohydrodynamic modeling of interplanetary disturbances between the Sun and Earth. Astrophys. and Space Sci., 105, 187 —208 (1984).
https://doi.org/10.1007/BF00651218
https://doi.org/10.1007/BF00651218
34. Erlykin A. D., et al. On the correlation between cosmic ray intensity and cloud cover. [arXiv:0906.4442v2 ].
35. Eselevich V. G., Fainshtein V. G. An Investigation of the Relationship between the Magnetic Storm Dst-index and Different Types of Solar Wind Streams. Ann. geophys., 11 (8), 678 —684 (1993).
36. Fenrich F. R., Luhmann J. G. Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett., 25, 2999 —3002 (1998).
https://doi.org/10.1029/98GL51180
https://doi.org/10.1029/98GL51180
37. Hapgood M. A. Scientific Understanding and the Risk from Extreme Space Weather. [arXiv:0908.4349 ].
38. Harrison R. F., Drezet P. M. The application of an adaptive non-linear systems identification technique to the online forecast of Dst index. Proc. Les Woolliscroft memorial Conf. / Sheffield Space Plasma Meeting: Multipoint measurements versus theory, Sheffield, UK, Apr 24-26, 2001, ESA SP-492, 141 —146 (2001).
39. Hodgson R. On a curious Appearance seen in the Sun. Mon. Notic. Roy. Astron. Soc., 20, 15 —16 (1859).
https://doi.org/10.1093/mnras/20.1.15a
https://doi.org/10.1093/mnras/20.1.15a
40. Johnson J. R., Wing S. A cumulant-based analysis of non-linear magnetospheric dynamics. Report PPPL-3919-rev.2004. Available: http://www.pppl.gov/pub_report/2004/PPPL-3919rev.pdf
41. Joselyn J. A. Geomagnetic activity forecasting — the state-of-the-art. Rev. Geophys., 33, 383 —401 (1995).
https://doi.org/10.1029/95RG01304
https://doi.org/10.1029/95RG01304
42. Khabarova O. V. Current Problems of Magnetic Storm Prediction and Possible Ways of Their Solving. Sun and Geosphere, 2 (1), 32—37 (2007).
43. Khabarova O. V., et al. Solar wind and interplanetary magnetic field features before magnetic storm onset. Proc. of the 8-th International Conference on Substorms, 127 —132 (Canada, 2006).
44. Kivelson M. G., Russel C. T. (Eds.) Introduction to Space Physics. (Cambridge Univ. Press, Cambridge, 1995).
45. Kugblenu S., Taguchi S., Okuzawa T. Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm. Earth Planets Space, 51, 307 —313 (1999).
https://doi.org/10.1186/BF03352234
https://doi.org/10.1186/BF03352234
46. Lilensten J. (Ed.) Space Weather: Research Towards Applications in Europe. Astrophys. and Space Sci. library. (Springer, Dordrecht, 2007).
47. Li X., Baker D. N., Larson D., et al. The Predictability of the Magnetosphere and Space Weather. Eos, Transactions American Geophysical Union, 84 (37), 361—370 (2003).
https://doi.org/10.1029/2003EO370002
https://doi.org/10.1029/2003EO370002
48. Lyatsky W., Newell P. T., Hamza A. Solar Illumination as Cause of the Equinoctial Preference for Geomagnetic Activity. Geophys. Res. Lett., 28, 2353 — 2356 (2001).
https://doi.org/10.1029/2000GL012803
https://doi.org/10.1029/2000GL012803
49. Marubashi K. The space weather forecast program. Space Sci. Rev., 51, 197 —214 (1989).
https://doi.org/10.1007/BF00226275
https://doi.org/10.1007/BF00226275
50. McKenna-Lawlor S. M. P., et al. Predicting interplanetary shock arrivals at Earth, Mars, and Venus: A real-time modeling experiment following the solar flares of 5-14 December 2006. J. Geophys. Res., 113A (6), A06101 (2008).
51. Mikaelian T. Spacecraft charging and hazard to electronics in space. [arXiv:0906.3884]
52. Moos N. A. F. Magnetic observations made at the government observatory, Bombay, for the period 1846 to 1905, and their discussion, Part II: the phenomenon and its discussion. (Bombay, 1910).
53. O’Brien T. P., McPherron R. L. Forecasting the Ring Current Index Dst in Real Time. J. Atmos. and Sol.-Terr. Phys., 62 (14), 1295—1299 (2000).
https://doi.org/10.1016/S1364-6826(00)00072-9
https://doi.org/10.1016/S1364-6826(00)00072-9
54. O’Brien T. P., McPherron R. L. An empirical phase-space analysis of ring current dynamics: solar wind control of injection and decay. J. Geophys. Res., 105A (4), 7707—7720 (2000).
https://doi.org/10.1029/1998JA000437
https://doi.org/10.1029/1998JA000437
55. O'Brien T. P., McPherron R. L. Seasonal and diurnal variation of Dst dynamics. J. Geophys. Res., 107, 1341 (2002).
56. Odenwald S., Green J., Taylor W. Forecasting the impact of an 1859-calibre superstorm on satellite resources. Adv. Space Res., 38, 280—297 (2006).
https://doi.org/10.1016/j.asr.2005.10.046
https://doi.org/10.1016/j.asr.2005.10.046
57. Oh S.Y., Yi Y. Relationships of the solar wind parameters with the magnetic storm magnitude and their association with the interplanetary shock. J. Korean Astron. Soc., 37, 151—157 (2004).
https://doi.org/10.5303/JKAS.2004.37.4.151
https://doi.org/10.5303/JKAS.2004.37.4.151
58. OMNI 2 Database. Available: http://nssdc.gsfc.nasa.gov/omniweb/
59. Pallocchia G. et al. ANN prediction of the Dst index. Mem. Soc. Astron. ital. Suppl., 9, 120—122 (2006).
60. Palmer S. J., Rycroft M. J., Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys., 27, 557—595 (2006).
https://doi.org/10.1007/s10712-006-9010-7
https://doi.org/10.1007/s10712-006-9010-7
61. Parker E. N. Kinetic properties of interplanetary matter. Planet Space Sci., 9, 461—475 (1962).
https://doi.org/10.1016/0032-0633(62)90050-8
https://doi.org/10.1016/0032-0633(62)90050-8
62. Parnowski A. S. Statistical approach to Dst prediction. J. Phys. Studies, 12(4) (2008).
63. Parnowski A. S. Statistically predicting Dst without satellite data. Earth, Planets and Space, 61 (5), 621— 624 (2009).
https://doi.org/10.1186/BF03352936
https://doi.org/10.1186/BF03352936
64. Parnowski A. S. Regression modeling method of space weather prediction. Astrophys. and Space Sci., 323 (2), 169—180 (2009). [arXiv:0906.3271]
65. Pulkkinen T. I., et al. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions. Geophys. Res. Lett., 34, L02105 (2007).
66. Pustilnik L. A., Yom Din G. Space climate manifestation in Earth prices – from medieval England up to modern USA. (arXiv:astro-ph/0411165)
67. Raeder J., et al. Global simulation of the Geospace Environment Modeling substorm challenge event. J. Geophys. Res., 106, 381—396 (2001).
https://doi.org/10.1029/2000JA000605
https://doi.org/10.1029/2000JA000605
68. Rangarajan G. K., Barreto L. M. Use of Kp index of geomagnetic activity in the forecast of solar activity. Earth Planets Space, 51, 363—372 (1999).
https://doi.org/10.1186/BF03352240
https://doi.org/10.1186/BF03352240
69. Romanova N. V., et al. Statistical Relationship between the Rate of Satellite Anomalies at Geostationary Satellites with Fluxes of Energetic Electrons and Protons. Kosmicheskie Issledovaniya, 43 (3), 186—193 (2005).
70. Ryerson , et al. The Late Aurora Borealis and the Telegraph. J. Education for Upper Canada, P. 132 (1858).
71. Sagdeev R. Z. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4 (1966).
72. Siscoe G., et al. Reconciling prediction algorithms for Dst. J. Geophys. Res., 110, A02215 (2005).
73. Space Studies Board. Severe Space Weather Events — Understanding Societal and Economic Impacts: A Workshop Report. (National Academies Press, Washington, 2008).
74. Srivastava M. A logistic regression model for predicting the occurrence of intense geomagnetic storms. Ann. geophys., 23, 2969—2974 (2005).
https://doi.org/10.5194/angeo-23-2969-2005
https://doi.org/10.5194/angeo-23-2969-2005
75. Stewart B. On the Great Magnetic Disturbance Which Extended from August 28 to September 7, 1859, as Recorded by Photography at the Kew Observatory. Philosophical Transactions of the Royal Society of London, 151, 423—430 (1861).
https://doi.org/10.1098/rstl.1861.0023
https://doi.org/10.1098/rstl.1861.0023
76. Stoupel E., et al. Clinical Cosmobiology — Sudden Cardiac Death and Daily/Monthly Geomagnetic, Cosmic Ray and Solar Activity — the Baku Study (2003—2005). Sun and Geosphere, 1 (2), 13—16 (2006).
77. Takalo J., Mursula K. A model for the diurnal universal time variations of the Dst index. J. Geophys. Res., 106, 10905—10921 (2001).
https://doi.org/10.1029/2000JA000231
https://doi.org/10.1029/2000JA000231
78. Temerin M., Li X. A New Model for the Prediction of Dst on the Basis of the Solar Wind. J. Geophys. Res., 107A (12), 1472 (2002).
79. Temerin M., Li X. Dstmodel for 1995—2002. J. Geophys. Res., 111A (4), A04221 (2006).
https://doi.org/10.1029/ 2005JA011257
80. Valdivia J. A., Sharma A. S., Papadopoulos K. Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett., 23 (21), 2899—2902 (1996).
https://doi.org/10.1029/96GL02828
https://doi.org/10.1029/96GL02828
81. Watanabe S., et al. Prediction of the Dst index from solar wind parameters by a neural network method. Earth Planets Space, 54, 1263—1275 (2002).
https://doi.org/10.1186/BF03352454
https://doi.org/10.1186/BF03352454
82. Wei H. L., Billings S. A., Balikhin M. A. Analysis of the geomagnetic activity of the Dst index and self-affine fractals using wavelet transforms. Nonlinear Processes in Geophysics, 11, 303—312 (2004).
https://doi.org/10.5194/npg-11-303-2004
https://doi.org/10.5194/npg-11-303-2004
83. Wing S., et al. Kp forecast models. J. Geophys. Res., 110, A04203 (2005).
84. World Data Center for Geomagnetism, Kyoto. Available: http://swdcwww.kugi.kyoto-u.ac.jp/
85. Zhou X.-Y., Wei F.-S. Prediction of recurrent geomagnetic disturbances by using adaptive filtering. Earth Planets Space, 50, 839—845 (1998).