Clinorotation influence on the growth of root hairs in Beta vulgaris L. seedlings

1Shevchenko, GV, 1Kordyum, EL
1M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2007, 13 ;(2):048-052
https://doi.org/10.15407/knit2007.02.048
Publication Language: Russian
Abstract: 
It is shown that clinorotation affects the angle of Beta vulgaris L. root hair growth and changes it from 85–95° to 40–60° at the stage of hair initiation. Our investigations of actin cytoskeleton arrangement and tip-based gradient of calcium ions proved the involvement of above components in the maintenance of the directed growth in simulated microgravity (clinorotation).
Keywords: calcium ions, clinorotation, maintenance
References: 
1. Kordyum E., Danevich L. Effect of clinostatting on the concentration of calcium ions in the root hairs of watercress. Tsitologiya, 38, 765—769, (1996) [in Russian].
2. Shevchenko G. Function of the epidermis of the root of Beta vulgaris in conditions of modified gravity. Reports of the National Academy of Sciences of Ukraine, No. 6, 50—54 (2001) [in Ukrainian].
3. Baluska F., Samaj J., Kendrick-Jones J., et al. Tissue - and domain-specific distribution and redistribution of actin filaments, myosins, and profilin isoforms in cells of root apices. Cell Biology Intern., 21, 852—854 (1997).
4. Bibikova T., Gilroy S. Root hair development. J. Plant Growth Regul., 21, 383—415 (2003).
https://doi.org/10.1007/s00344-003-0007-x 
5. Bibikova T., Zhigilei A., Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta, 203, 495—505 (1997).
6. Felle H., Hepler P. The cytosolic Ca + concentration gradient of Sinapsis alba root hairs as revealed by Ca +-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiology, 114, 39—45 (1997).
https://doi.org/10.1104/pp.114.1.39 
7. Grynkiewicz G., Poenie M., Tsien R. A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem., 260, 3400— 3450 (1985).
8. Harris N., Oparka K. J. Plant Cell Biology. A practical approach, 329 p. (Univ. Press, Oxford, 1994).
9. Levina N., Lew R., Heath I. Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saproleg-niaferax II. J. Cell Sci., 107, 127—134 (1994).
10. Malho R., Read N. D., Pais M. S., Trewavas A. J. Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J., 5, 331—341 (1994).
https://doi.org/10.1111/j.1365-313X.1994.00331.x 
11. Miller D., de Ruijter N., Emons A. From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J. Exp. Bot., 48, 1881 — 1896 (1997).
https://doi.org/10.1093/jexbot/48.316.1881 
12. Ryan E., Steer M., Dolan L. Cell biology and genetics of root hair formation in Arabidopsis thaliana II. Protoplasma, 215, 140—149 (2001).
https://doi.org/10.1007/BF01280310 
13. Schmidt A., Hall M. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol., 14, 305—338 (1998).
https://doi.org/10.1146/annurev.cellbio.14.1.305
14. Staiger C. Signaling to the actin cytoskeleton in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 257—288 (2000).
https://doi.org/10.1146/annurev.arplant.51.1.257 

15. Wymer C, Bibikova T., Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J., 12, 427— 437 (1997).
https://doi.org/10.1046/j.1365-313X.1997.12020427.x