Longitudinal distribution of total ozone content in edge region of antarctic stratospheric vortex

1Grytsai, AV, 1Evtushevsky, OM, 2Milinevsky, GP, 1Grytsai, ZI, 1Agapitov, AV
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2005, 11 ;(5-6):005-011
https://doi.org/10.15407/knit2005.05.005
Publication Language: Ukrainian
Abstract: 
Longitudinal distribution of total ozone content (TOO in the edge region of the Antarctic stratospheric vortex is analyzed using the TOMS satellite data (version 8) of 1979 to 2004. The five-month time interval of August-December covering the late Antarctic winter, spring, and early summer is considered. The five-month mean TOC zonal distributions at latitudes of 65° S and 70° S are obtained from the daily TOMS data. Zonal wave number 1 is dominated. It forms a zonal asymmetry with the quasi-stationary wave minimum and maximum placed in the opposite longitudinal sectors. Our results show that during the last 26 years the TOC asymmetry increased and in the last years it reaches 70–90 Dobson Units, or about 30 % relative to the zonal mean. Interannual variations of the longitude of the TOC maximum are observed near the stable position of 162° E and 172° E at latitudes of 65° S and 70° S, respectively. Besides the interannual variations, the longitude of the TOC minimum during 1979–2004 shows a systematic displacement to the east in the longitudinal sector of 45° W to 10° E. A spectral analysis shows that this tendency is caused by an interaction between the quasi-stationary components of the zonal wave number 1 and 2. In the last decades they have the opposite longitudinal drift of the phase of the maximum amplitude.
References: 
1. Aleksandrov E. L., Izrael' Iu. A., Karol' I. L., Khrgian A. Kh. Earth's ozone shield and its changes, 288 p. (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].
2. Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere Handbook, 510 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
3. Vargin P. N. Analysis of an eastward-travelling planetary wave from satellite data on the total ozone content. Izv. RAN. Fizika atmosfery i okeana, 39 (3), 327—334 (2003) [in Russian].
4. Fishbein E. F., Elson L. S., Froidevaux L., et al. MLS observations of stratospheric waves in temperature and 03 during 1992 Southern winter. Geophys Res. Lett., 20 (12), 1255—1258 (1993).
https://doi.org/10.1029/93GL01110
5. Grytsai A. V., Evtushevsky A. M., Milinevsky G. P. Interannual variations of planetary waves in ozone layer at 65°S. In: Zerefos C. (Ed.) Zerefos OZONE: Proceedings XX Quadrennial Ozone Symposium, 1—8 June 2004, Kos, Greece, Vol. 1, 544— 545 (International Ozone Commission, Athens, Greece, 2004).
6. Hio Y., Hirota I. Interannual variations of planetary waves in the Southern Hemisphere stratosphere. J. Met. Soc. Jap., 80 (4B), 1013—1027 (2002).
https://doi.org/10.2151/jmsj.80.1013
7. Hio Y., Yoden S. Quasi-periodic variations of the polar vortex in the Southern Hemisphere due to wave-wave interaction. J. Atmos. Sci., 61 (21), 2510—2527 (2004).
https://doi.org/10.1175/JAS3257.1
8. Lee A. M., Roscoe H. K., Jones A. E., et al. The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring. J. Geophys. Res., 106 (D3), 3203—3211 (2001).
https://doi.org/10.1029/2000JD900398
9. Mechoso C. R., Hartmann D. L. An observational study of traveling planetary waves in the Southern Hemisphere. J. Atmos. Sci., 39 (9), 1921 — 1935 (1982).
https://doi.org/10.1175/1520-0469(1982)039<1921:AOSOTP>2.0.CO;2
10. Quintanar A. I., Mechoso C. R. Quasi-stationary waves in the Southern Hemisphere. Part I. Observational data. J. Climate, 8 (11), 2659—2672 (1995).
https://doi.org/10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2
11. Quintanar A. I., Mechoso C. R. Quasi-stationary waves in the Southern Hemisphere. Part II: Generation mechanisms. J. Climate, 8 (11), 2673—2690 (1995).
https://doi.org/10.1175/1520-0442(1995)008<2673:QSWITS>2.0.CO;2
12. Salby M. L. Fundamentals of Atmospheric Physics, Eds R. Dmowska, R. Holton, 627 p. (Academic Press, 1996).
13. Salby M. L., Callaghan P. F. Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98 (D2), 2715—2727 (1993).
https://doi.org/10.1029/92JD01814
14. Schoeberl M. R., Lait L. R., Newman P. A., Rosenfield J. E. The structure of the polar vortex. J. Geophys. Res., 97 (D8), 7859—7882 (1992).
https://doi.org/10.1029/91JD02168
15. Steinbrecht W., Hassler B., Winkler P., et al. Comparison of observed stratospheric ozone and temperature time series with chemistry-climate model simulations. Part I: Global variations of total ozone and 50 hPa temperature. In: Zerefos C. (Ed.) Zerefos OZONE: Proceedings XX Quadrennial Ozone Symposium, 1—8 June 2004, Kos, Greece, Vol. 2, 757—758 (International Ozone Commission, Athens, Greece, 2004).
16. Wirth V. Quasi-stationary planetary waves in total ozone and their correlation with lower stratospheric temperature. J. Geophys. Res., 98 (D5), 8873—8882 (1993).