Incorporating geographic information technologies into a framework for biological diversity conservation and preventing biological threats to landscapes

1Fedoniuk, TP, 1Skydan, ОV
1Polissia National University, Zhytomyr, Ukraine
Space Sci. & Technol. 2023, 29 ;(2):10-21
https://doi.org/10.15407/knit2023.02.010
Publication Language: English
Abstract: 
As the long-term sustainability of both natural and artificial phytocenoses is under serious threat from biological invaders, the global community is working hard to prevent invasions and rapidly eradicate or halt the spread of invasive species. By tracking the actual spread of "invaders" or predicting areas at risk of invasion, geographic information systems (GIS) and remote sensing of the Earth (RSE) can significantly assist the process of ensuring biosecurity at the state level. Research has shown the potential of remote sensing and GIS applications for invasive species mapping and modeling, even though it is currently restricted to a small number of taxa.
        This article gives examples of how GIS and RSE can be used to track invasive species like Utricularia australis R. br. and Lemna aequinoctialis Welw. To describe the distribution of species, the current Internet databases of species distribution and the author’s own research were used. It also talks about promising ways to find and track the spread of invasive species, like using NDVI indices, chlorophyll and xanthophyll content to find changes in regional biodiversity, some problems with finding changes in biodiversity in agricultural landscapes, and mapping invasion risk. 
        The study also demonstrates how GIS technology may be used to identify agricultural landscape biodiversity using radiometric space data from Sentinel-1, followed by a verification of the findings. The prospects of spatial, spectral, and temporal analysis of images are determined, as they make it possible to outline the boundaries of ecosystems, biometric characteristics of species, characteristics of their current and potential areas of distribution, etc.
Keywords: bioinvasion, distribution, GIS-technologies, invasive species, pest infestation, vegetation indices
References: 
1. Bolch E. A., Santos M. J., Ade C., Khanna S., Basinger N. T., Reader M. O., Hestir E. L. (2020). Remote detection of invasive alien species. Remote sensing of plant biodiversity. Springer, Cham, 267-307.
2. Clavero M., Brotons L., Pons P., Sol D. (2009). Prominent role of invasive species in avian biodiversity loss. Biological Conservation, 142(10), 2043-2049.
3. Fedoniuk T. P., Fedoniuk R. H., Romanchuk L. D., Petruk A. A., Pazych V. M. (2019). The influence of landscape structure on the quality index of surface waters. J. Water and Land Development, 43(1), 56-63.
4. Fedoniuk T., Bog M., Orlov O., Appenroth K. J. (2022). Lemna aequinoctialis migrates further into temperate continental Europe - A new alien aquatic plant for Ukraine. Feddes Repertorium,
5. Fedoniuk T., Borsuk O., Melnychuk T., Zymaroieva A., Pazych, V. (2021). Assessment of the consequences of forest fires in 2020 on the territory of the chornobyl radiation and ecological biosphere reserve. Scientific Horizons, 24(8), 26-36.
6. Fedonyuk T. P., Galushchenko O. M., Melnichuk T. V., Zhukov O. V., Vishnevskiy D. O., Zymaroieva, A. A., Hurelia V. V. (2020). Prospects and main aspects of the GIS-technologies application for monitoring of biodiversity (on the example of the Chornobyl Radiation-Ecological Biosphere Reserve). Space Science and Technology, 26(6).
7. Utricularia australis R.Br. GBIF.org (9 November 2022) GBIF Occurrence Download https://doi.org/10.15468/dl.hspebk. Retrieved from https://www.gbif.org/species/7297904 8. Lemna aequinoctialis Welw. GBIF.org (9 November 2022) GBIF Occurrence Download
9. Sentinel Hub Public Collections.
10. Pro rishennia Rady natsionalnoi bezpeky i oborony Ukrainy vid 15 zhovtnia 2021 roku "Pro Stratehiiu biobezpeky ta biolohichnoho zakhystu" [The decision of the National Security and Defense Council of Ukraine dated October 15, 2021 "On the Biosafety and Biological Defense Strategy"].
11. Joshi C., De Leeuw J., van Duren I. C. (2004, July). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. Proc. ISPRS, 35, B7. 12. Klein I., Oppelt N., Kuenzer C. (2021). Application of remote sensing data for locust research and management - a review. Insects, 12(3), 233.
13. Skydan O. V., Danyk Yu. H., Fedoniuk T. P., et al. (2022). Space and geoinformation support for decision-making in key areas of national security and defense of Ukraine: monografy. Ed. Red. O. V. Skydan. Zhytomyr: Poliskyi natsionalnyi universytet, 280 p. ISBN 978-617-7684-81-6 [In Ukrainian].
14. Lean C. H. (2021). Invasive species increase biodiversity and, therefore, services: An argument of equivocations. Conservation Sci. and Practice, 3(12), e553.
15. Miller H. M., Richardson L., Koontz S. R., Loomis J., Koontz L. (2013). Users, uses, and value of Landsat satellite imagery-Results from the 2012 survey of users. US Geological Survey Open-File Report, 1269, 51.
16. Niphadkar M., Nagendra H. (2016). Remote sensing of invasive plants: incorporating functional traits into the picture. Int. J. Remote Sensing, 37(13), 3074-3085.
17. Nykolyuk O., Skydan O., Pyvovar P. (2021). Assessment of the Relationship Between Farm Size and Flexibility: The Case of Ukraine. Management Theory and Studies for Rural Business and Infrastructure Development, 43, 21-37.
18. Orlov O. O., Fedoniuk T. P., Iakushenko D. M., Danylyk I. M., Kish R. Y., Zymaroieva A. А., Khant G. А. (2021). Distribution and ecological growth conditions of Utricularia australis R. br. in Ukraine. J. Water and Land Development, 48(1-3), 32-47.
19. Pettorelli N., Owen H. J. F., Duncan C. (2016). How do we want Satellite Remote Sensing to support biodiversity conservation globally? Methods in Ecology and Evolution, 7(6), 656-665.
20. Pyšek P., Hulme P. E., Simberloff D., Bacher S., Blackburn T. M., Carlton J. T., ..., Richardson D. M. (2020). Scientists' warning on invasive alien species. Biological Reviews, 95(6), 1511-1534.
21. Qiu J. (2015). A global synthesis of the effects of biological invasions on greenhouse gas emissions. Global Ecology and Biogeography, 24(11), 1351-1362.
22. Rocchini D., Andreo V., Förster M., Garzon-Lopez C. X., Gutierrez A. P., Gillespie T. W., ... Neteler M. (2015). Potential of remote sensing to predict species invasions: A modelling perspective. Progress in Physical Geography, 39(3), 283-309.
23. Skydan O. V., Fedoniuk T. P., Pyvovar P. V., Dankevych V. Y., Dankevych Y. M. (2021). Landscape fire safety management^ the experience of Ukraine and the EU. News Nat. Acad. Sci. Republic of Kazakhstan. Se. Geology and Technical Sci., 6(450), 125-132.
24. Skydan O., Pyvovar P., Topolnytskyi P., Prysiazhna T. (2022). Analysis of rural areas of Ukraine on the basis of ESA WorldCover 2020. Scientific Horizons, 25(5), 74-85.
25. Wegmann, Martin, Benjamin Leutner, and Stefan Dech, eds. Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing Ltd, 2016