Algorithmic monitoring of the working capacity of spacecraft jet engines

1Kortunov, VI, 1Kulik, AS
1National Aerospace University 'Kharkiv Aviation Institute', Kharkiv
Section: Space Energy, Power and Propulsion
Publication Language: Russian
The problem of defining the number of failed spacecraft jet engine by estimating the disturbance moments and forces during stabilization and closing in on a space station is solved. Methods for the reconstruction of input signals of dynamic systems are analyzed using the criterion of accuracy and speed of response. The results of modeling the estimation of disturbance moments and forces of failed engines obtained with the method of iteratively inverse models are presented.
Keywords: iteratively inverse models, jet engines, space energy
1. Vasilenko G. I. Signal restoration theory - Reduction to ideal device in physics and technology, 272 p. (Sovetskoe Radio, Moscow, 1979) [In Russian].
2.  Gayduk A. R. Estimation of signals and invariance. Avtomat. i Telemekh., No. 3, 20—29 (1984) [In Russian].
3.  Kleiman E. G. Identification of input signals in dynamical systems, Avtomat. i Telemekh., No. 12, 3—15 (1999) [In Russian].
4.  Kostenko Yu. T., Lyubchik L. M. Metody reshenija obratnyh zadach avtomaticheskogo upravlenija [Methods for solving inverse automatic control problems], 48 p. (UMK VO, Kiev, 1988) [In Russian].
5.  Kortunov V. I. Diskretnye fil'try vosstanovlenija vozmushhenij s zadannoj stepen'ju astatizma [Discrete filters for recovering perturbations with a given degree of astatism]. Vesnik Khark. Gos. Polit. un-ta: Sb. nauch. tr. (Sistemnyj analiz, upravlenie i informacionnye tehnologii), Is. 121, 118—123 (2000) [In Russian].
6.  Kortunov V. I. Vosstanovlenie vozmushhenij v dinamicheskoj sisteme s zadannoj tochnost'ju  [Restoration of perturbations in a dynamical system with a given accuracy]. Systems of Information Processing, Is. 3 (9), 55—60 (NANU, PANM, HVU, Kharkiv, 2000) [In Russian].
7. Radchenko I. F. One method for estimating perturbations. Avtomatika, No. 4, 77—82 (1991) [In Russian].

8.  Strejc V. State Space Theory of Discrete Linear Control, Transl. from Eng., ed. by Ya. Z. Tsypkin, 296 p. (Nauka, Moscow, 1985) [In Russian].