High-gradient magnetic fields as a tool of simulating gravity effects on plants

1Kondrachuk, AV, 2Belyavskaya, NA
1Institute of Physics, NAS of Ukraine, Kyiv, Ukraine
2M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2001, 7 ;(5-6):100-111
Publication Language: Russian
It is known that the high-gradient magnetic field (HGMF) exerts a directional ponderomotive force on diamagnetic substances. This effect can be used to modify the gravity force acting on statoliths by manipulating the statolith locations within the gravisensing cells. This allows us to consider the HGMF as a potentially very promising and useful tool of the directional and selective stimulation of the gravisensing cells of plants. Besides, the possibility to use the HGMF to modify or even compensate the gravity effects on these cells could give us a new approach to control plant gravireaction in weightlessness and to imitate microgravity effects in laboratory experiments. The main goals of the present work are: 1) to review the mechanisms of the HGMF effects on the processes which may go in the gravitropic reaction of the roots; 2) to discuss the development of the optimal HGMF configuration; 3) to indicate the peculiarities of mechanisms of the gravitropic reaction (perception and response) which might be the result of the HGMF effects; 4) to propose the procedures of the application of the HGMF for stimulation of gravisensing cells in microgravity conditions and for imitation of the microgravity effects in these cells in ground-based experiments.
Keywords: gravisensing cells, high-gradient magnetic fields, microgravity
1.  Ivanov E. V., Ivanova L. I., Zelentsov V. V. Optimal shape of the magnet pole for measuring the magnetic susceptibility by the Faraday method. Poluprovod. tehnika i jelektronika, No. 2, 221—223 (1970) [in Russian].
2. Kalinnikov V. T. Rakitin Yu. V. Introduction to Magnetochemistry. Statistical method of magnetic susceptibility in Chemistry, 302 p. (Nauka, Moscow, 1980) [in Russian].
3.  Kats M. Ya., Stadnikov A. G., Gol'din L. L., et al. Method for calculating the profile of the poles of a single-zone isodynamic magnetic separator. Poluprovod. tehnika i jelektronika, No. 3, 152—157 (1964) [in Russian].
4.  Kuznetsov A. A., Kuznetsov O. A. Modeling of the gravitational effect on plants by a highly inhomogeneous magnetic field. Biofizika, 35 (5), 835— 840 (1990) [in Russian].
5.  Medvedev S. S. Physiological Basics of Plant Polarity, 159 p. (Kol’na, St. Petersburg, 1996) [in Russian].
6.  Merkys A. I. Geotropic reaction of plants, 264 p. (Mintis, Vilnyus, 1973) [in Russian].
7.  Merkys A. I. Force of gravity in processes of plant growth. In: Problems of  Cosmic Biology, Vol. 68, 185 p. (Nauka, Moscow, 1990) [in Russian].
8.  Piruzyan L. A., Kuznetsov A. A., and Chikov V. M. About the Magnetic Heterogeneity of Biological Systems. Izvestiya AN SSSR, Seria Biologicheskaya, No. 5, 645—650 (1980) [in Russian].
9.  Salamatova T. S. Plant Cell Physiology, 158 p. (Len. Gos. Univ., Leningrad, 1983) [in Russian].
10. Sochnev A. Ya. Electromagnetic systems in magnetic fields of which the ponderomotive forces acting on the particle decrease or remain constant in the direction of action. Zhurn. tehn. fiziki, No. 10, 472—477 (1940) [in Russian].
11.  Sochnev A. Ya. Calculation of the field strength by direct method, 112 p. (Energoatomizdat, Leningrad, 1984) [in Russian].
12.  Chikov V. M. Study and some applications of cellular magnetophoresis: Extended abstract of candidate’s thesis, 16 p. (Chernogolovka, 1985) [in Russian].
13.  Audus L. J. Magnetotropism: a new plant growth response. Nature, 185, 132—134 (1960).
14.  Audus L. J., Whish J. C. Magnetotropism. In: Biological Effects of Magnetic Fields, Ed. by M. F. Barnothy, Vol. 1, 170—182 (1964).
15.  Behrens H. M., Weisenseel M. H., Sievers A. Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol., 70, 1079—1083 (1982).
16.  Belyavskaya N. A. Calcium and graviperception in plants: inhibitor analysis. Int. Rev. Cytol., 168, 123— 185 (1996).
17.  Claassen D. S., Spooner B. S. Impact of altered gravity on aspects of cell biology. Int. Rev. Cytol., 156, 301—359 (1994).
18.  Geazintov N. E., Nostrand F. V., Becker J. F., et al. Magnetic field-induced orientation of photosynthetic systems. Biochem. Biophys. Acta, 267, 65—72 (1972).
19.  Hasenstein K. H., Kuznetsov O. A. The response of lazy-2 tomato seedlings to curvature-inducing magnetic gradients is modulated by light. Planta, 208, 59—65 (1999).
20.  Ishikawa H., Evans M. L. Induction of curvature in maize roots by calcium or by thigmostimulation. Plant Physiol., 100, 762—768 (1992).
21.  Kato R. Effects of a magnetic field on the growth of primary roots of Zea mays. Plant Cell Physiol., 29, 1215—219 (1988).
22.  Kondrachuk A. V., Sirenko S. P. The theoretical consideration of microgravity effects on a cell. Adv. Space Res., 17 (6/7), 165—168 (1996).
23.  Konings H. Gravitropism in roots: an evaluation of progress during the last three decades. Acta Bot. Neerl., 44 (3), 195—223 (1995).
24.  Kuznetsov O. A., Hasenstein K. H. Magnetophoretic induction of root curvature. Planta, 198, 87—94 (1996).
25.  Kuznetsov O. A., Hasenstein K. H. Magnetophoretic induction of curvature in coleoptiles and hypocotyls. J. Exp. Bot., 48, 1951 — 1959 (1997).
26.  Kuznetsov O. A., Hasenstein K. H. Magnetophoretic analysis of statoliths in Chara rhizoids suggests viscoelastic and cytoskeletal contribution to gravisensing. Abstr. 33rd COSPAR Scientific Assembly, Warsaw, Poland, 16—23 July 2000, P. 312 (Warsaw, 2000).
27.  Legue V., Blancaflor E., Wymer C. Cytoplasmic free Ca + in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol., 114, 789—793 (1997).
28.  Maret G., Dransfeld K. Biomolecules and polymers in strong permanent magnetic fields. Strong and Ultrastrong Magnetic Fields and Their Applications. Topics in Applied Physics, Ed. by F. Herlach, Vol. 57, 104—145 (1985).
29.  Monshausen G. B, Zieshang H. E., Sievers A. Differential proton secretion in the apical elongation zone caused gravis-timulation is induced by the signal from the root cap. Plant Cell Environ., 19, 1408—1412 (1996).
30.  Pickard B. G. Contemplating the plasmalemmal control center model. Protoplasma, 182, 1—9 (1994).
31.  Pickard B. G., Ding J. P. The mechanosensory calcium-selective ion channel: key component of plasmalemmal control centre? Aust. J. Plant Physiol., 20 (4), 439— 459 (1993).
32.  Schimek C., Eibel P., Horie T., et al. Protein crystals in Phycomyces sporangiophores are involved in graviperception. Adv. Space Res., 24, 687—692 (1999).
33.  Schwarzacher J. C., Audus L. J. Further studies in magnetotropism. J. Exp. Bot., 24, 459—464 (1973).
34.  Selwood P. W. Magnetochemistry, 458 p. (N.Y., 1943).
35.  Sperber D., Maret G., Weisenseel M. H., et al. Oriented growth of pollen tubes in strong magnetic fields. Naturwissenschaften, 68, 40—42 (1981).
36.  Staves M. P., Wayne R., Leopold A. C. Hydrostatic pressure mimics gravitational pressure in characean cells. Protoplasma, 168, 141 — 152 (1992).
37.  Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Ann. Rev. Biochem., 56, 289—327 (1987).
38.  Wayne R., Staves M. P., Leopold A. C. Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis. Protoplasma, 155, 43—57 (1990).
39.  Wayne R, Staves M. P., Leopold A. C. The contribution of the extracellular matrix to gravisensing in characean cells. J. Cell Sci., 101, 611—623 (1992).
40.  Weise S. E., Kuznetsov O. A., Hasenstein K. H. Curvature in Arabidopsis  inflorescene stems is limited to the region of amyloplast displacement. Plant Cell Physiol., 41, 702—710 (2000).
41.  Weisenseel M. H., Becker H. F., Ehlgotz J. G. Growth, gravitropism, nd endogenous ion currents of cress roots (Lepidium sativum L.). Plant Physiol., 100 (1), 16—25 (1992).

42.  Weisenseel M. H., Meyer A. J. Bioelectricity, gravity and plants. Planta, 203, S 98—S 111 (1997).