To the theory of the MHD waves in the inner magnetosphere of the Earth
Heading:
1Cheremnykh, OK, 1Burdo, OS, 1Kremenetsky, IA, 1Parnowski, AS 1Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2001, 7 ;(5-6):044-063 |
https://doi.org/10.15407/knit2001.05.044 |
Publication Language: Russian |
Abstract: The low-frequency perturbations characterized by the inequalities
|∇ψ·∇X|/∇ψ, |(B×∇ψ)·∇X|/(|B|·|∇ψ|) >> |X|/b, |B·∇X|/|B| ,
where X denotes any component of the plasma-element displacement vector, В is the total magnetic field, ψ is a mark of magnetic surface, and b is the typical scale of variations, equilibrium-value are considered in the magnetospheric plasma. The equations for small oscillations describing both small-scale and large-scale perturbations were obtained from the ideal MHD equations using the common properties of the differential operators in an arbitrary stream-coordinate system, the assumption of ballooning for the perturbation components, and the dipole model for the geomagnetic field. It is shown that in the "cold" plasma approximation these equations describe the toroidal and poloidal Alfven modes. It is found that a finite pressure of plasma generates an additional slow magnetosonic oscillation branch which is "coupled" with the poloidal Alfven mode. The stability of ballooning modes is investigated. It is shown that the poloidal Alfven modes become unstable when the pressure increases. The dependence of the stability limit on the plasma pressure and its profile and on the Mcllwain parameter was analyzed by using its energetic principle and the set of small oscillation equations. The results of numerical calculations for the stability limit of ballooning modes for the typical plasma parameters and radial pressure profiles of magnetospheric plasma are presented.
|
Keywords: magnetosphere, MHD, perturbations |
References:
1. Bernstein I. B., Frieman E. A., Kruskal M. D., Kulsrud R. M. An Energy Principle for Hydromagnetic Stability Problems. In: Problems of modern physics, 85—110 (Izd-vo inostr. lit-ry, Moscow, 1958) [in Russian].
https://doi.org/10.1098/rspa.1958.0023
https://doi.org/10.1098/rspa.1958.0023
2. Burdo O. S., Verkhoglyadova O. P., Cheremnykh O. K. Study of ballooning modes in the inner magnetosphere of the Earth. Izv. Akad. Nauk, Ser. Fiz., 64 (9), 1896—1900 (2000) [in Russian].
3. Ivanov V. N., Pokhotelov O. A. Flute instability in the plasma layer of the earth magnetosphere. Fizika Plazmy, 13 (12), 1446—1454 (1987) [in Russian].
4. Kadomtsev B. B. Hydromagnetic Stability of a Plasma. In: Voprosy teorii plazmy, Vol. 2, 132—176 (Gosatomizdat, Moscow, 1963) [in Russian].
5. Klimushkin D. Yu. Method of description of the Alfvén and magnetosonic branches of inhomogeneous plasma oscillations. Fizika Plazmy, 20 (3), 309—315 (1994) [in Russian].
6. Nikiforov A. F., Uvarov V. B. Special Functions of Mathematical Physics, 316 p. (Nauka, Moscow, 1987) [in Russian].
7. Pustovitov V. D., Shafranov V. D. Equilibrium and stability of plasmas in stellarators. In: Voprosy teorii plazmy, Is. 15, 146—293 (1987) [in Russian].
8. Roederer J. Dynamics of Geomagnetically Trapped Radiation, 192 p. (Mir, Moscow, 1972) [in Russian].
9. Cheng C. Z., Chang T. C., Lin C. A., Tsai W. H. Magne-tohydrodynamic theory of field line resonances in the magneto-sphere. J. Geophys. Res., 98 (A7), 11339— 11347 (1993).
https://doi.org/10.1029/93JA00505
https://doi.org/10.1029/93JA00505
10. Cheremnykh O. K., Revenchuk S. M., Omelchenko A. Ya., Burdo O. S. Theory of quasi-flute modes in toroidal plasma configurations. Phys. Scripta, 51, 264—276 (1995).
https://doi.org/10.1088/0031-8949/51/2/016
https://doi.org/10.1088/0031-8949/51/2/016
11. Cummings W. D., O'Sulivan R. J., Coleman P. J. Standing Alfven waves in the magnetosphere. J. Geophys. Res., 74, 778—789 (1974).
https://doi.org/10.1029/JA074i003p00778
https://doi.org/10.1029/JA074i003p00778
12. Engebretson M. J., Zanetti L. J., Poterna T. A., Acuna M. H. Harmonically structured ULF pulsations observed by the AMPTE CCE magnetic field experiment. Geophys. Res. Lett., 13, 905—911 (1986).
https://doi.org/10.1029/GL013i009p00905
https://doi.org/10.1029/GL013i009p00905
13. Gold T. Motions in the magnetosphere of the Earth. J. Geophys. Res., 64, 1219—1226 (1959).
https://doi.org/10.1029/JZ064i009p01219
https://doi.org/10.1029/JZ064i009p01219
14. Hameiri E., Laurence P., Mond M. The ballooning instability in space plasmas. J. Geophys. Res., 96, 1513— 1518 (1991).
https://doi.org/10.1029/90JA02100
https://doi.org/10.1029/90JA02100
15. Lakhina G. S., Mond M., Hameiri E. Ballooning mode instability at the plasmapause. J. Geophys. Res., 95 (A4), 4007—4016 (1990).
https://doi.org/10.1029/JA095iA04p04007
https://doi.org/10.1029/JA095iA04p04007
16. Lee D.-Y. Ballooning instability in the tail plasma sheet. Geophys. Res. Lett., 25 (21), 4095—4098 (1998).
https://doi.org/10.1029/1998GL900105
https://doi.org/10.1029/1998GL900105
17. Lee D.-Y., Min K. W. On the possibility of the MHD-ballooning instability in the magnetotail-like field reversal. J. Geophys. Res., 101 (A8), 17347—17354 (1996).
https://doi.org/10.1029/96JA01314
https://doi.org/10.1029/96JA01314
18. Liu W. W. A note on the interchange stability criterion. J. Geophys. Res., 102 (A12), 27443—27447 (1996).
https://doi.org/10.1029/96JA02787
https://doi.org/10.1029/96JA02787
19. Lui A. T. Y., Hamilton D. C. Radial profiles of quiet time magnetospheric parameters. J. Geophys. Res., 97, 13325—13332 (1992).
https://doi.org/10.1029/92JA01539
https://doi.org/10.1029/92JA01539
20. Spies G. O. Magnetohydrodynamic stability theory with closed magnetic field lines. Phys. Fluids, 17 (2), 400—408 (1974).
https://doi.org/10.1063/1.1694729
https://doi.org/10.1063/1.1694729
21. Tsyganenko N. A. Modelling the Earth magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res., 100 (A4), 5599—5612 (1995).
https://doi.org/10.1029/94JA03193
https://doi.org/10.1029/94JA03193