The software TRASSA for the analysis of spacecraft thermal conditions

1Gavrylov, RV, 1Kislov, AM, 1Romanenko, VG, 1Fenchenko, VN
1B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(4):003-016
Publication Language: Russian
The software package TRASSA for the computer simulation and calculation of the thermal mode of a spacecraft in orbital flight conditions is described. The purpose of the simulating programs is considered. The techniques for the construction of the spacecraft geometrical model, calculation of its orientation in the orbit and modelling of radiating heat exchange in it are covered. The thermal scheme of a spacecraft is represented by an oriented graph and the mathematical model of heat exchange is given concerning this graph as a hybrid one including models of the concentrated and distributive parameters. We present the computation of the thermal mode of a satellite oriented to the Sun.
1. Dul’nev G. N., Parfenov V. G., Sigalov A. V. Methods of Calculating the Device Thermal Mode, 312 p. (Radio i Svyaz’, Moscow, 1990) [in Russian].
2. Zhitomirskii I. S., Romanenko V. G. Solving the problems of thermal conductivity associated with radiant and convective heat transfer, on graphs. In: Hydrodynamics and Heat Transfer in Cryogenic Systems, Is. 4, 23—28 (Kharkov, 1974) [in Russian].
3. Zhitomirskii I. S., Romanenko V. G. The method of thermal and hydraulic calculation of non-stationary modes in complex cryogenic systems. In: Thermal processes in cryogenic systems, 55—64 (Nauk. dumka, Kiev, 1986) [in Russian].
4. Zaletaev V. M., Kapinos Yu. V., Surguchev O. V. Spacecraft heat exchange calculation, 208 p. (Mashinostroyenie, Moscow, 1979) [in Russian].
5. Kislov A. M., Romanenko V. G. Application of Monte Carlo method to calculate the molecular and radiant fluxes in complex configuration systems: Preprint N 80—12 FTINT AN USSR, 36 p. (Kharkov, 1980) [in Russian].
6. Kovtunenko V. M., Kopyl A. I., Latayko P. A., and Petrov Yu. V. Heat Regime of Interkosmos Satellites Oriented on the Sun. In: Kosmich. issled. na Ukraine, Is. 8, 3—14 (Kiev, 1976) [in Russian].
7. Konyukhov S. N. Scientific and technological trends in designing spacecraft at the M. K. Yangel Yuzhnoe Design Office. Kosm. nauka tehnol., 1 (1), 12—34 (1995) [in Russian].
8. Petrov G. I. (Ed.) Modeling of the thermal regimes of the spacecraft and its environment, 382 p. (Mashinostroenie, Moscow, 1971) [in Russian].
9. Kislov A. M., Romanenko V. G., Fenchenko V. N. Modernization of the TRASS A-2 software package for calculating the thermal conditions of spacecraft: Scientific and technical. report, 120 p. (SKTB FTINT NAN Ukrainy, Kharkov, 2003) [in Russian].
10. Kislov A. M., Romanenko V. G., Kurilov V. S. A package of applied programs for calculating the thermal regime of instrument compartments of a spacecraft: Scientific and technical. report, 150 p. (SKTB FTINT NAN Ukrainy, Kharkov, 1995) [in Russian].
11. Pankratov B. M. Fundamentals of thermal design of space transportation systems, 304 p. (Mashinostroenie, Moscow, 1988) [in Russian].
12. Kislov A. M., Romanenko V. G. Development of a software package with an automated system for the formation of optico-geometric models for calculating the heat transfer of spacecraft MC-1-TK-TV, Sci.-Tech. Report, 120 p. (SKTB FTINT NAN Ukrainy, Kharkov, 2000) [in Russian].
13. Kislov A. M., Romanenko V. G., Kurilov V. S. Development of a program for calculating the thermal regime of spacecraft with anisotropic thermal conductivity of structural elements: Scientific and technical. report . 69 p. (SKTB FTINT NAN Ukrainy, Kharkov, 1997) [in Russian].
14. Rassamakin B. M., Rogachev V. A., Khominich V. I., et al. Experimental Modeling of Heat Modes of Small Space Vehicles and their External Heat Flows. I. TVK-2.5 Heat Vacuum Plant. Kosm. nauka tehnol., 8 (1), 37—41 (2002) [in Russian].
15. Rassamakin B. M., Rogachyov V. A., Khominich V. I., et al. Experimental modelling of heat modes of small space vehicles and their external heat flows. II. Heat vacuum test results of the MS-1-TK-TV -type micro-sputnik mock-up. Kosm. nauka tehnol., 8 (4), 3—10 (2002) [in Russian].
16. Romanenko V. G. Mathematical models, algorithms and programs for calculating the process of refueling wasteless cold accumulators: Preprint No. 35—90 FTINT AN USSR, 17 p. (Kharkov, 1990) [in Russian].
17. Sobol' I. M. Numerical Monte Carlo methods, 312 p. (Nauka, Moscow, 1973) [in Russian].
18. Duboshin G. N. (Ed.) Reference Manual on Celestial Mechanics and Astrodynamics, 864 p. (Nauka, Moscow, 1976) [in Russian].
19. Khokhulin V. S. Method for studying thermal regime of structures of arbitrary configuration. Inzh.-Fiz. Zh., 29 (1), 140—145 (1975) [in Russian].
20. Hofacker W., Lucas J., Zilly F. Thermal analysis of spacecraft by combining different analysis tools. SAE Techn. Pap. Ser., No. 911584, 1—8 (1991).
21. Introduction to SINDA, 2003. C &R Technologies, Inc. (2003).
Available: http: www
22. Kislov A. M., Romanenko V. G., Petrov Yu. V. Numerical Modeling of a Spacecraft Thermal Regimes in a Flight and in Space Environment Simulation. In: Proc. 5th Sino-Rus.-Ukr. Symp. Space Sci. Technol., 6-9 June, Harbin, 194 (Harbin, 2000).
23. Pollack F. M., Bryce D. J., Collins R. L., Fischer W. D. Two new computer aided engineering systems for developing NEVADA thermal models. AIAA Paper, No. 2329, 9 p. (1984).
24. Rebis J. J., Jeanne P. ESARAD — the European Space Agency's radiative analyzer. SAE Techn. Pap. Ser., No. 911587, 1 — 11 (1991).

25. Romanenko V. G., Kislov A. M., Petrov Yu. V. The Code TRASSA for Computation of Unstationary Thermal States of Spacecraft Equipment Modules. In: Proc. 4th Ukr.-Rus.-China Symp. Space Sci. Technol., 12—17 Sept., 1996, Kyiv, Vol. 1, 185—187 (Kyiv, 1996).