High-altitude spacecraft power losses of solar arrays as a result of interaction with environment

1Shuvalov, VA, 2Kochubey, GS, 2Priymak, AI, 2Pismenniy, NI
1Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine
2Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipropetrovsk, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(4):039-049
Publication Language: Russian
Design-experiment relationships characterizing the reduction of electric power of solar arrays during long-term (about 10 years) interaction with environment in orbit are obtained. We consider the influence of some environment factors on power losses of solar arrays. These factors are the ionizing and ultraviolet radiations, protection glasses contamination by products of destruction of spacecraft external surface materials, thermocycling, radiation electrization and plasma thrusters plumes. A procedure for the estimation of power reduction of solar arrays in orbit is developed.
1. Akishin A. I. Emission processes under electric breakdown of radiation-charged insulators. Fizika i himija obrabotki materialov, No. 5, 27—30 (1998) [in Russian].
2. Akishin A. I., Tyutrin Yu. I., Tseplyaev L. I. Electric discharge mechanism of solar cell damaging under electron irradiation. Fizika i himija obrabotki materialov, No. 6, 56—61 (1996) [in Russian].
3. Antonov V. M., Ponomarenko A. G. Laboratory Studies of Effects of Spacecraft Electrification, 115 p. (Nauka, Novosibirsk, 1992) [in Russian].
4. Askhabov S. N., Burgasov M. P., Veselovzorov A. N., et al. Study on the jet of the stationary plasma accelerator with closed electron drift. Fizika Plazmy, 7 (1), 225—230 (1981) [in Russian].
5. Askhabov S. N., Grdlichko D. P., Kozlov A. I. Investigation of the effects of a jet and thermal radiation from an electrorocket engine on a spacecraft solar array. Kosm. Issled., 26 (5), 796—799 (1988) [in Russian].
6. Burgasov M. P., Nadiradze A. B., Chirov A. A., et al. Effects of Interaction of Jets of Electric Rocket Engines with Solar Arrays of Spacecraft. Kosm. Issled., 32 (4-5), 194—201 (1994) [in Russian].
7. Vojcenja V. S., Guzhova S. K., Titov V. I. Effects of low temperature plasma and electromagnetic radiation materials, 224 p. (Energoatomizdat, Moscow, 1991) [in Russian].
8. Grishin S. D., Leskov L. V. Electric Rocket Engines of Spacecraft, 216 p. (Mashinostroenie, Moscow, 1989) [in Russian].
9. Danilin B. S., Kireev V. Yu. Application of Low-Temperature Plasma for Etching and Cleaning of Materials, 264 p. (Energoatomizdat, Moscow, 1987) [in Russian].
10. Ermolenko A. F. On testing the hypothesis of linear summation of damages. Tr. Moskov. jenergeticheskogo in-ta, Is. 185, 52—54 (1974) [in Russian].
11. Koltun M. M. Solar Cells, 192 p. (Nauka, Moscow, 1987) [in Russian].
12. Korn V. Z., Shuvalov V. A. Probe Diagnostics of a Flux of Particles Desorbed from the Surface of a Solid Body by a Jet of Rarefied Plasma. Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 34 (5), 144—150 (1993) [in Russian].
13. Kreinin L. B., Grigorieva G. M. Solar Cells in the Conditions of Impact of Cosmic Radiation. In: Itogi nauki i tehniki. VINITI. Issledovanie kosmicheskogo prostranstva, 13, 128 p. (1979) [in Russian].
14. Kulikov I. A., Kupriy A. A., Nichiporov F. G., and Yurlova G. A. An Experimental Investigation of Effect of the Factors Existing in Outer Space on the Durability of Carbon Fiber-Reinforced Plastics. 1. Gas Release From Carbon Fiber-Reinforced Plastics in the Absence of Protective Coatings. Fizika i khimiya obrabotki materialov, No. 1, 47—54 (1993) [in Russian].
15. Kulikov I. A., Kuprij A. A., Yurlova G. A. Experimental studies of space factors effects on durability of graphite/epoxy composites. 4. Regularities of accumulation of different type corrosion products from metallized graphite/epoxy composite. Fizika i khimiya obrabotki materialov, No. 4, 38—46 (1993) [in Russian].
16. Letin V. A. Problems of Electrification of Spacecraft Solar Arrays. Kosmonavtika i Raketostroenie, No. 30, 42—53 (2003) [in Russian].
17. Vernov N. S. (Ed.) A Model of Outer Space (Cosmos Model-82), vol. 2, 770 p. (Vol. 1-3; Vol. 2) (Mosk. Gos. Univ., Moscow, 1983) [in Russian].
18. Neff J. A., Mullen K. R., Fogdol L. B. The Influence of Modeled Conditions in Synchronous Orbit on Characteristics of Contaminated Solar Reflector. Aerokosmich. Tekh., No. 8, 91—98 (1987) [in Russian].
19. Olsen R. K. Extreme Potentials of Charging Recorded during a Flight of the ATS-6 Satellite. Aerokosmich. Tekh., No. 5, 90—97 (1988) [in Russian].
20. Parks D. E., Kats I. Interaction of Plasma Generated by a Spacecraft with High-Voltage Solar Panels. Raketnaya Tekhnika i Kosmonavtika, 18 (1), 64—69 (1980) [in Russian].
21. Pereverzev E. S. The models of damage accumulation in durability problems, 360 p. (Nauk.dumka, Kiev, 1995) [in Russian].
22. Prisniakov V. F. On the degradation of solar batteries aboard space vehicles. Kosm. nauka tehnol., 2 (1-2), 73—81 (1996) [in Russian].
23. Behrisch R. (Ed.) Sputtering by Particle Bombardment, Vol. 2, 488 p. (Vol. 1-2; Vol. 2) (Mir, Moscow, 1986) [in Russian].
24. Rauschenbach H. S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion, 360 p. (Jenergoatomizdat, Moscow, 1983) [in Russian].
25. Fudji X., Shibuya I., Abe T., et al. Modeling of Processes of Electrification and Discharge of Electrically Insulating Covers of Satellites by Way of Irradiation of Their Surfaces with Electron Beams. Aerokosmich. Tekh., No. 5, 104—111 (1989) [in Russian].
26. Chirov A. A., Burgasov M. P., Zayavlin V. R., et al. Influence of Plasma Streams from an Ion-Plasma Jet Engine on Power-producing Features of Solar Arrays. Kosmicheskie Issledovaniia, 35 (3), 331— 333 (1997) [in Russian].
27. Shuvalov V. A. Modeling the interaction of bodies with the ionosphere, 180 p. (Nauk. dumka, Kiev, 1995) [in Russian].
28. Shuvalov V. A. Determination of the integrated emissivity of conducting materials by means of hot-wire probes. Teplofizika vysokih temperatur, 22 (3), 492—496 (1984) [in Russian].
29. Shuvalov V. A., Bystritskii M. G., Kochubei G. S., Churilov A. E. The structure of clusters and jets of pulsed plasma expanding into vacuum. Teplofizika vysokih temperatur, 42 (1), 23—30 (2004) [in Russian].
30. Shuvalov V. A., Kochubei G. S., Lazuchenkov D. N. The plume-flows structure of spacecraft thrusters. Kosm. nauka tehnol., 9 (4), 17—25 (2003) [in Russian].
31. Shuvalov V. A., Priimak A. I., Gubin V. V. Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulation and Neutralization. Kosmicheskie Issledovaniia, 39 (1), 18—26 (2001) [in Russian].
32. Yagushkin N. I., Grafodatskii O. S., Islyaev Sh. N., et al. Radiation and Electric Phenomena in Dielectric Materials of Spacecraft at Electrifications. Issled. Geomagn. Aeron. Fiz. Solntsa, Is. 86, 131 — 168 (1989) [in Russian].
33. Boyd I. D. Review of hall thruster plume modeling. J. Spacecraft and Rockets, 38 (3), 381—387 (2001).
34. Brosse S. Electrical effects of plasma propulsion on geostationary telecommunication satellite. Alcatel Telecommunications Rev., No. 4, 270—277 (2001).
35. Dever J. A., Bruckner E. J., Scheiman D. A., et. al. Contamination of space environmental effects on solar cells and thermal control surfaces. J. Spacecraft and Rockets, 32 (5), 832—838 (1995).
36. Garrett H. The geosynchronous plasma environment. Technol. Environment Spatial. Toulous, 337—441 (1987).
37. Gatsonis N. C., Eckman R., Yin X., et al. Experimental investigations and numerical modelling of pulsed plasma thruster plumes. J. Spacecraft and Rockets, 38 (3), 454—464 (2001).
38. Goldhammer L. G. Irradiation of solar cell candidates for the ATS-F solar cell flight experiment. In: 9th IEEE Photovolt. Specialists Conf., 316—328 (N. Y., 1972).
39. Grigorieva G. M., Kagan M. B., Letin V. A., et. al. Analysis of Geostationary spacecraft solar arrays degradation from solar proton flares. In: Sixth European Space Power Conf., Porto, Portugal, 6-10 May, 2002 (ESA SP-502), 725—730 (Porto, 2002).
40. Konradi A., Mc Coy J. E., Garriott O. K. Current leakage for low altitude satellites: modeling application. Quantitative modeling of magnetospheric processes, 617—633 (Washington, 1979).
41. Leet S. J., Fogdall L. B., Wilkinson M. C. Thermooptical property degradation of irradiated spacecraft surfaces. J. Spacecraft and Rockets, 32 (5), 832—838 (1995).
42. Letin V. A. Optical, radiation and thermal cycling losses of power solar array returned from orbital station «Mir» after 10.5 years of operation. In: Sixth European Space Power Conf., Porto., Portugal, 6-10 May, 2002 (ESA SP-502), 713—718 (Porto, 2002).
43. Letin V. A, Bordina N. V., Zayavlin V. R., et. al. An experimental simulation of space environment effects on the solar-cell battery. In: Problems of spacecraft-environment interaction: Int. Conf., 110—112 (Irkutsk, 1992).
44. Mandell M. J., Katz J., Steen P. J., et al. The effect of solar array voltage patterns plasma power losses. JEEE Transactions on nuclear science, NS-27, No. 6, 1797—1800 (1980).
45. Stevens N. J., Barbay G. J., et. al. Modeling of environmentally induced transients within satellites. J. Spacecraft and Rockets, 24 (3), 259—263 (1987).
46. Tajmar M., Gonzalez J., Hilgers A. Modeling of spacecraft-environment interactions on SMART-1. J. Spacecraft and Rockets, 38 (3), 393—399 (2001).
47. Tarasov V. N., Babkin G. V, Morozov E. P., et al. Electrostatic behavior of solar-cell batteries under conditions of radiation electrization. In: Problems of spacecraft-environment interaction: Int. Conf., 58—59 (Irkutsk, 1992).
48. Tribble A. C. Revised estimates of photochemically deposited contamination on the GPS satellites. J. Spacecraft and Rockets, 35 (1), 114—116 (1998).
49. Tribble A. C., Boyadjian B., Davis J., et al. Contamination control engineering design guidelines for the aerospace community. NASA Contractor Report / NASA, No. 4740, 126 p. (1996).
50. Tribble A. C., Haffner J. W. Estimates of photochemically deposited contamination on the GPS satellites. J. Spacecraft and Rockets, 28 (2), 222—227 (1991).
51. Van Gilder D. B., Boyd J. D., Keydar M. Particle simulations of a Hall thruster plume. J. Spacecraft and Rockets, 37 (1), 129—137 (2001).
52. Yagushkin N. L., Sergeev A. L., Grafodatsky O. S., et. al. Laboratory investigations of environment effect on spacecraft structural materials. In: Problems of spacecraft-environment interaction: Int. Conf., 48—49 (Irkutsk, 1992).