Transient luminous events during thunderstorms and the simulation of electric fields in the lower atmosphere

1Shuyenko, OV, 2Kozak, LV, 1Ivchenko, VM
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(2):23-34
https://doi.org/10.15407/knit2010.02.023
Publication Language: Ukrainian
Abstract: 
We give a general overview and analysis of conditions for the occurrence of transient luminous events in the atmosphere, namely, termed sprites, elves, jets, and lightnings up. The main features of their appearance and manifestations were obtained. Quasielectrostatic fields of the system of thundercloud charges with the use of the Wilson model were simu­lated. It is found that in the lower atmosphere the decreasing length for the electrostatic field created by a thundercloud is about 10 km. This result is in good agreement with direct measurements. The spatial and temporal dynamics of an electric field in the Earth-ionosphere system was simulated. The obtained results were compared with the analytic solution. Our electric field consideration can be used for further simulation of sprites and jets.
Keywords: elves, jets, lightnings, sprites
References: 
1. Sedunov Yu. S., Avdiushin S. I., Borisenkov E. P., et al. (Eds.) Atmosphere: Handbook, 509 p.  (Gidrometeoizdat, Leningrad, 1991) [in Russian].
2. Barrington-Leigh C. P., Inan U. S., Stanley M., et al. Sprites directly triggered by negative lightning discharges. Geophys. Res. Lett., 26, 3605—3608 (1999).
https://doi.org/10.1029/1999GL010692 
3. Blanc E., Farges T., Roche R., et. al. Nadir observations of sprites from the International Space Station. J. Geophys. Res., 109A (2) (2004).
doi:10.1029/ 2003JA009972
4. Boccippio D. J., Williams E. R., Heckman W. A., et al. Sprites, ELF transients, and positive ground strokes. Science, 269, 1088 (1995).
https://doi.org/10.1126/science.269.5227.1088 
5. Cho M., Rycroft M. J. Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J. Atmos. Sol.-Terr. Phys., 60, 871—888 (1998).
https://doi.org/10.1016/S1364-6826(98)00017-0 
6. Fukunishi H., Takahashi Y., Kubota M., et al. Elves, lightning-inducted transient luminous events in the lower ionosphere. Geophys. Res. Lett., 23, 2157—2160 (1996).
https://doi.org/10.1029/96GL01979
7. Füllekrug M., Mareev E. A., Rycroft M. J. Sprites, Elves and Intense Lightning Discharges. Phys. and Chemistry, II Mathematics, 5-42 (2006).
8. Greifinger C., Greifinger P. Transient ULF electric and magnetic fields following a lightning discharge. J. Geophys. Res., 81, 2237 (1976).
https://doi.org/10.1029/JA081i013p02237
9. Hale L. C., Baginski M. E. Current to the ionosphere following a lightning stroke. Nature, 329, 814 (1987).
https://doi.org/10.1038/329814a0 
10. Harrison R. G., Carslaw K. S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys., 41, 227 (2003).
https://doi.org/10.1029/2002RG000114 
11. Illingworth A. J. Electric field recovery after lightning as the response of the conducting atmosphere to a field change. Quart. J. Roy. Meteorol. Soc., 98, 604 (1972).
12. Inan U. S., Sampson W. A., Taranenko Y. N. Space-time structure of lower ionospheric optical flashes and ionization changes produced by lightning EMP. Geophys. Res. Lett., 23, 1017 (1996).
https://doi.org/10.1029/96GL00746 
13. Lyons W. A., Nelson T. E., Armstrong R. A., et. al. Upward electrical discharges from the tops of thunderstorms. Bull. Amer. Meteorol. Soc., 84, 445— 454 (2003).
https://doi.org/10.1175/BAMS-84-4-445 
14. Lyons W. A., Nelson T., Williams E. R., et al. Characteristics of sprite-producting positive cloud-to-ground lightning during the 19 July STEPS mesoscale convective systems. Mon. Weather. Rev., 131, 2417—2427 (2003).
https://doi.org/10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2
15. Mazur V., Shao X.-M., Krehbeil P. R. «Spider» lightning in intracloud and positive cloud-to-ground flashes. J. Geophys. Res., 103, 19811—19822 (1998).
https://doi.org/10.1029/98JD02003 
16. Nagano I., Yagitani S., Miyamura K., et al. Full-wave analysis of elves created by lightning-generated electromagnetic pulses. J. Atmos. Sol.-Terr. Phys., 65, 1024—1082 (2003).
https://doi.org/10.1016/S1364-6826(02)00324-3 
17. Pasko V. P., Inan U. S., Bell T. F., Taranenko Y. N. Sprites produced by quasi-electrostatic heating and ionization in the lower atmosphere. J. Geophys. Res., 102, 4529 (1997).
https://doi.org/10.1029/96JA03528 
18. Pasko V. P., Stanley M. A., Mathews J. D., et al. Electrical discharge from a thunderstorm top to the lower ionosphere. Nature, 416, 152—154 (2002).
https://doi.org/10.1038/416152a
19. Rycroft M. J., Israelsson S., Price C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol.-Terr. Phys., 62, 1563—1576 (2000).
https://doi.org/10.1016/S1364-6826(00)00112-7
20. Sentman D. D., Wescott E. M. Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere. Phys. Plasmas, 2, 2514 (1995).
https://doi.org/10.1063/1.871213
21. Uman M. A. The Earth and its atmosphere as a leaky spherical capacitor. Amer. J. Phys., 42, 1033 (1974).
https://doi.org/10.1119/1.1987924
22. Wescott E. M., Sentman D. D., Heavner, M. J., et. al. Blue starters, brief upward discharges from an intense Arkansas thunderstorm. Geophys. Res. Lett., 23, 2153 (1996).
https://doi.org/10.1029/96GL01969
23. Wescott E. M., Sentman D. D., Heavner M. J., et al. Observations of «columniform» sprites. J. Atmos. Sol.-Terr. Phys., 60, 733—740 (1998).
https://doi.org/10.1016/S1364-6826(98)00029-7

24. Wescott E. M., Sentman D. D., Stenbaek-Nielsen H. C., et al. New evidence for the brightness and ionisation of blue starters and blue jets. J. Geophys. Res., 106, 21549—21554 (2001).
https://doi.org/10.1029/2000JA000429