The conception of growing first generation-plants in lunar greenhouses

1Kozyrovska, NA, 1Zaets, IYe., 2Burlak, OP, 3Rogutskyy, IS, 4Mytrokhyn, OV, 5Mashkovska, SP, 6Foing, BH
1Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine
3Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
5M.M. Gryshko National Botanic Garden of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
6ESA/ESTEC/SRE-S, postbus 299 NL-2200 AG, Noordwijk, The Netherlands
Kosm. nauka tehnol. 2010, 16 ;(2):70-74
Publication Language: English
The ability to grow plants in greenhouses is a practical necessity for providing an advanced life support system for humans while inhabiting a permanently manned lunar base. Plants will provide fresh food, oxygen, and clean water for explorers living in lunar bases. The conception of first-generation plants growing in a lunar base anticipates them to play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation-plants (wheat, rice, etc.) at a low cost. The residues of the first generation-plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. To reduce a cost of early missions to the Moon, it would be practical to use a local material such as the lunar regolith for plant growing in lunar greenhouses. The use of microorganisms for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressful conditions, to decompose both silicate rocks and plant straw needed for a protosoil formation is a key idea in a precursory scenario of growing pioneer plants for a lunar base.
Keywords: lunar regolith, microorganisms, plants
1. Banfield J., Barker W., Welch S., et al. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. PNAS, 3404—3411 (1999).
2. Baur P. S., Clark R. S., Walkinshaw C. H., et al. Uptake and translocation of elements from Apollo 11 lunar material by lettuce seedlings. Phyton, No. 32, 133—142 (1974).
3. Bérczi Sz, Józsa S., Szakmdny G., et al. Studies of solar system cumulate rocks from NASA Lunar set and NIPR Martian meteorites. EPSC2008-A-00272, European Planetary Science Congress, EPSC Abstracts, Vol. 3 (2008).
4. Bond P. L., Smriga S. P., Banfield J. F. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ Microbiol., 66, 3842—3849 (2000).
5. Brown I., Sarkisova S. A., Garrison D. H. Bioweathering of lunar and Martian rocks by cyanobacteria: a resource for Moon and Mars exploration. Lunar and Planetary Science, 34, 1673 (2008).
6. Burd G. I., Dixon D. G., Glick B. R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46 (3), 237—245 (2000).
7. Edwards K. J., Bond P. L., Gihring T. M., et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287 (5459), 1796— 1799 (2000).
8. García-Pichel F. Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment. Geol., 185, 205—213 (2006).
9. Gros J. B., Poughon L., Lasseur C, et al. Recycling efficiencies of C, H, O, N, S, and P elements in a Biological Life Support System based on microorganisms and higher plants. Adv. Space Res., 31 (1), 195—199 (2003).
10. Faisal M., Hasnain S. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth. Biotechnol Lett., 27 (13), 943—947 (2005).
11. Ferl R. J., Paul A.-L. Plants in long term lunar exploration. NLSI Lunar Science Conference (July 20—23, 2008, California), 2159.pdf (California, 2008).
12. Foing B. H, Bhandari N., Goswami J. N., et al. Udaipur Lunar Declaration 2004. Adv. Space Res., 42, 240—241 (2008).
13. Friedmann E. I., Hua M., Ocampo-Friedmann R. Terraforming Mars: dissolution of carbonate rocks by cyano bacteria. J. Br. Interplanet Soc., 46, 291—292 (1993).
14. Johnson P. H., Walkinshaw C. H., Martin J. R., et al. Elemental analysis of Apollo 15 surface fines used in biological studies in the Lunar Receiving Laboratory. BioScience, 22, 96—99 (1972).
15. Johnston R. S., Mason I. A., Wooley B. C. Biomedical results of Apollo. NASA Spec. Publ., 407—424 (1975).
16. Kandler O. The early diversification of life. Nobel Symp., 84, 152—160 (1994).
17. Kozyrovska N. O., Korniichuk O. S., Voznyuk T. M., et al. Microbial community in a precursory scenario of growing Tagetes patula L. in a lunar greenhouse. Kosm. Nauka Technol. (Space Sci. Technol.), 10 (5-6), 221—225 (2004).
18. Kozyrovska N. O., Korniichuk O. S., Voznyuk T. M., et al. Growing pioneer plants for a lunar base. Adv. Space Res., 37, 93—99 (2006).
19. Lemanceau P., Bakker P. A., De Kogel W. J. Effect of pseudo bactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol., 58 (9), 2978—2982 (1992).
20. Liu H., Yu C. Y., Manukovsky N. S., et al. A conceptual configuration of the lunar base bioregenerative life support system including soil-like substrate for growing plants. Adv. Space Res., 42, 1080—1088 (2008).
21. Liu J., Maldonado-Mendoza I., Lopez-Meyer M., et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J., 50 (3), 529—544 (2007).
22. Lytvynenko T., Zaetz I., Voznyuk T. M., et al. A rationally assembled microbial community for growing Tagetes patula L. in a lunar greenhouse. Res. Microbiol., 157, 87—92 (2006).
23. Mashkovska S. P. An accumulation and a role of the volatile oils in forming the allelopathic potential in marigold (Tagetes L.). Dopovidi Natzionalnoi Akademii Nauk Ukrainy (Proc. Nat. Acad. Sci. Ukraine), 6, 167—170 (2003) [in Ukrainian].
24. Maurhofer M., Hase C., Meauwly P., et al. Induction of systemic resistance of tobacco to tobacco necrosis virus by the rootcolonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology, 84, 139—146 (1994).
25. Monje O., Stutte G. W., Goins G. D. Farming in space: Environmental and biophysical concernsn. Adv. Space Res., 31, 151—167 (2003).
26. Mytrokhyn O. V., Bogdanova S. V., Shumlyanskyy L. V. Anorthosite rocks of Fedorivskyy suite (Korosten Pluton, Ukrainian Shield). Current problems of geological science. Kyiv State University, 53—57 (Kyiv, 2003).
27. Mytrokhyn O. V., Bogdanova S. V., Shumlyanskyy L. V. Poly baric chrystalization of Korosten Plyton anortosites (Ukrainian shield). Mineral. J., 30 (12), 36—56 (2008) [in Ukrainian].
28. Natarajan K. A., Modak J. M., Anand P. Some microbiological aspects of bauxite mineralization and beneficiation. Miner. Metallurg. Proces., 14, 47—53 (1997).
29. Pace N. R. A molecular view of microbial diversity and the biosphere. Science, 276, 734—740 (1997).
30. Paul A.-L., Ferl R. J. Telemetric biology: evaluating in situ resources for biological payloads in a lunar lander. Joint Annual Meeting of LEAG-ICEUM-SRR (28—30 Oct. 2008, Florida), 4070 pdf (Florida, 2008).
31. Pieterse C. M. J., Van Wees S. C. M., Van Pelt J. A., et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell., 10, 1571—1580 (1998).
32. Podolich O. V., Ardanov P. E., Voznyuk T. M., et al. Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria. Biopolym. Cell., 23 (1), 21—28 (2007).
33. Tikhomirov A. A., Ushakova S. A., Manukovsky N. S. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment. Adv. Space Res., 31, 1711—1720 (2003).
34. Tikhomirov A. A., Ushakova S. A., Manukovsky N. S. Synthesis of biomass and utilization of plant wastes in a physical model of biological life-support system. Acta Astronaut., 53, 249—257 (2003).
35. Ushakova S. A., Zolotukhin I. G., Tikhomirov A. A., et al. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems. Appl. Biochem. Biotechnol., 151 (2–3), 676—685 (2008).
36. Walkinshaw C. H., Sweet H. C., Venketeswaran S., et al. Results of Apollo 11 and 12 quarantine studies on plants. BioScience, 20, 1297—1302 (1970).
37. Walkinshaw C. H., Galliano S. G. New crops for space bases. In: Advances in new crops, Eds J. Janick, J. E. Simon, 532—535 (Timber Press, 1990).
38. Walkinshaw C. H., Johnson P. H. Analysis of vegetable seedlings grown in contact with Apollo 14 lunar surface fines. HortScience, 6, 532—535 (1971).
39. Weete J. D., Walkinshaw C. H. Apollo 12 lunar material – effects on plant pigments. Can. J. Bot., 50 (1), 101—104 (1972).
40. Yang J., Kloepper J. W., Ryu C. M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci., 14 (1), 1—4 (2009).

41. Zaetz I., Voznyuk T., Kovalchuk M., et al. Optimization of plant mineral nutrition under growth-limiting conditions at a lunar greenhouse. Kosm. Nauka Technol. (Space Sci. Technol.), 12 (4), 1—8 (2006).