On the optimum frequency range in the radio-astronomical method for the measurement of streams of cosmic particles of ultrahigh energy

1Golubnichii, PI, 1Filonenko, AD
1Volodymyr Dahl East Ukrainian National University, Lugansk, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(2):17-22
Publication Language: Russian
The energy spectrum of a radio pulse induced by a cascade shower in the lunar regolith is derived. The transverse dimensions of the shower and a nonuniform distribution of excess electrons on the disc radius are taken into account. The spectrum in the high-frequency region is radically different from earlier results which are used in experimental studies. The maximum intensity of the field lies in the range from 500 to 600 MHz. In the frequency band from 1.6 to 2.3 GHz the radiation intensity decreases by several orders of magnitude. By the authors’ opinion, this is one of the reasons for the events absence in the experimental investigations, which are closed to the z0 burst models.
Keywords: lunar regolith, radio pulse spectrum, ultrahigh energy particles
1. Askar'yan G. A. Excess Negative Charge of an Electron-Photon Shower and its Coherent Radio Emission. JETP, 41, No. 2(8), 616— 618 (1961) [in Russian].
2. Askar'yan G. A. Coherent Radio Emission from Cosmic Showers in Air and in Dense Media. JETP, 48, 988—990 (1965) [in Russian].
3. Belen’kii S. Z. Avalanche Processes in Cosmic Rays, 243 p. (Ogiz-Gostekhizdat, Moscow, 1948) [in Russian].
4. Beresnyak A. R., Dagkesamanskii R. D., Zheleznykh I. M., et al. Limits on the Flux of Ultrahigh-Energy Neutrinos from Radio Astronomical Observations. Astron. zhurn., 82 (2), 149—156 (2005) [in Russian].
5. Golubnichii P. I., Filonenko A. D. Radio emission at medium and low frequencies due to an extensive air shower. Pis'ma v ZhTF, 20 (12), 57—61 (1994) [in Russian].
6. Golubnichii P. I., Filonenko A. D. Radio detection of extensive air showers at ultrahigh energies. Pis'ma v ZhTF, 20 (23), 59—62 (1994) [in Russian].
7. Dagkesamanskii R. D., Zheleznykh I. M. A radio astronomy method of detecting neutrinos and other superhigh-energy elementary particles. Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 50 (5), 233—235 (1989) [in Russian].
8. Landau L. D., Lifshitz E. M. Field Theory, 460 p. (Nauka, Moscow, 1967) [in Russian].
9. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integrals and Series, 797 p. (Nauka, Moscow, 1984) [in Russian].
10. Filonenko A. D. Superhigh-energy cosmic ray detection using shower radioemission. Uspehi fiz. nauk, 172 (4), 439—471 (2002) [in Russian].
11. Khristiansen G. B., Kulikov G. V., Fomin Iu. A. Ultrahigh-energy cosmic radiation, 253 p. (Atomizdat, Moscow, 1975) [in Russian].
12. Alvarez-Muñiz J., Vázquez R. A., Zas E. Calculation Methods for Radio Pulses from High Energy Showers. arXiv:astro-ph/0003315
13. Gorham P. W., Hebert C. L,. Liewer K. M., et al. Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux. arXiv:astro-ph/0310232
14. Gorham P. W., Liewer K. M., Naudet C. J. Initial Results from a Search for Lunar Radio Emission from Interactions of 1019 eV Neutrinos and Cosmic Rays 1. arXiv: astro-ph/9906504
15. Hankins T. H., Ekers R. D., O’Sullivan J. D. A search for lunar radio Cherenkov emission from hiqh-energy neutrinos. Mon. Notic. Roy. Astron. Soc., 283, 1027—1030 (1996).

16. Zas E., Halzen F., Stanev T. Electromagnetic pulses from high-energy showers: Implications for neutrino detection. Phys. Rev. D., 45 (1), 362—376 (1992).