Optical equipment for the space experiment «Diagnostics»

1Belyaev, BI, 2Katkovskyi, LV, 2Krot, Yu.A, 2Rogovets, AV, 2Sosenko, VA, ,, 2Khomitsevich, AD
1Research Institute «Institute of Applied Physical Problems named after A.N. Sevchenko» of the Belarusian State University, Minsk, Belarusia
2Research Institute «Institute of Applied Physical Problems named after A.N. Sevchenko» of the Belarusian State University, Minsk, Belarus
Kosm. nauka tehnol. 2010, 16 ;(2):35-40
https://doi.org/10.15407/knit2010.02.035
Publication Language: Russian
Abstract: 
We describe the constitution and arrangement of the optical sensor unit for the detection of spatial-temporal distributions and images of various optical phenomena and effects of native actions and actions caused by technological activities of people in the upper Earth’s atmosphere. The optical sensor unit is developed to be used aboard the International Space Station within the framework of the space experiment «Diagnostics».
Keywords: optical sensor, space experiment, spatial-temporal distributions
References: 
1. Babich L. P., Loiko T. V., Tsukerman V. A. High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons. Uspekhi Fizicheskikh Nauk, 160 (7), 49— 82 (1990) [in Russian].
https://doi.org/10.3367/UFNr.0160.199007b.0049
2. Belyaev B. I., Katkovsky L. V. Optical remote sensing, 455 p. (BGU, Minsk, 2006) [in Russian].
3. Belyaev B. I., Katkovsky L. V. Khvalei S. V. Calculation of the parameters of a spectrophotometric system for measuring airglow brightness in the upper atmosphere from space. Zhurn. prikl. spektr., 75 (1), 125—133 (2008) [in Russian].
4. Gurevich A. V. Nonlinear effects in the ionosphere. Uspekhi Fizicheskikh Nauk, 177 (11), 1145—1177 (2007) [in Russian].
https://doi.org/10.1070/PU2007v050n11ABEH006212
5. Korobeinikova M. P., Kulieva R. N., Goshdzhanov M., et al., in: Aurora Borealis and Nightglow, No. 33, 24—27 (Moscow, 1989) [in Russian]
6. Fishkova L. M., Toroshelidze T. I., in: Aurora Borealis and Nightglow, No. 33, 17—23 (Moscow, 1989) [in Russian]
7. Babich L. P., et al. New data on space and time scales of relativistic runaway electron avalanche for thunderstorm environment: Monte Carlo calculations. Phys. Lett., A245, P. 460 (1998).
https://doi.org/10.1016/S0375-9601(98)00268-0
8. Bethe H. A. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Physik, 5, 325 (1930).
https://doi.org/10.1002/andp.19303970303
9. Boccipio D. J. et al. Sprites, ELF transients and positive ground strokes. Science, 269, 1088 (1995).
https://doi.org/10.1126/science.269.5227.1088
10. Boeck W. L., Vaughan O. H., Blakeslee R. Low Light Level TV Images of Terrestrial Lightning as Viewed from Space. EOS Trans., Aug., 72, 171 (1991).
11. Boeck W. L., et al. Observations of lightning in the stratosphere. J. Geophys. Res., 100D (1), 1465 (1995).
https://doi.org/10.1029/94JD02432
12. Fishkova L. M., Gokhberg M. B., Pilipenko V. A. Relationship between night airglow and seismic activity. Ann. geophys., 3 (3), 689—694 (1985).
13. Franz R. C., Nemzek R. J., Winckler J. R. Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48—51 (1990).
https://doi.org/10.1126/science.249.4964.48
14. Gurevich A. V., Milikh G. A., Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett., A165, 463 (1992).
https://doi.org/10.1016/0375-9601(92)90348-P
15. Gurevich A. V., et al. Generation of electron-positron pairs in runaway breakdown. Phys. Lett., A275, 101—108 (2000).
https://doi.org/10.1016/S0375-9601(00)00558-2
16. Lehtinen N. G., et al. A two-dimensional model of runaway electron beams driven by quasi-electrostatic thundercloud fields. Geophys. Res. Lett., 24, 2639 (1997).
https://doi.org/10.1029/97GL52738
17. Lyons W. A. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys. Res. Lett., 21, 875 (1994).
https://doi.org/10.1029/94GL00560
18. Roussel-Dupré R. A. et al. Kinetic Theory of Runaway Air-Breakdown. Phys. Rev., E49 (3), 2257 (1994).
https://doi.org/10.1103/PhysRevE.49.2257
19. Sentman D. D., Wescott E. M. Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett., 20, 2857—2860 (1993).
https://doi.org/10.1029/93GL02998
20. Sentman D. D., et al. Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys. Res. Lett., 22 (10), 1205—1208 (1995).
https://doi.org/10.1029/95GL00583
21. Vaughan O. H., Vonnegut B. Recent observations of lighning discharges from the top of a thundercloud into the clear air above. J. Geophys. Res., 94, 13179—13182 (1989).
https://doi.org/10.1029/JD094iD11p13179
22. Vaughan O. H., et al. A cloud-to-space lightning as recorded by the Space Shuttle payload-bay TV cameras. Mon. Weather Rev., 120, 1459—1461 (1992).
https://doi.org/10.1175/1520-0493(1992)120<1459:ACTSLA>2.0.CO;2
23. Wescott E. M., et al. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets. Geophys. Res. Lett., 22 (10), 1209—1212 (1995).
https://doi.org/10.1029/95GL00582
24. Winckler J. R., Franz R. C., Nemzek R. J. Fast low-level light pulses from the night sky observed with the SKY-FLASH program. J. Geophys. Res., 98, 8775—8783 (1993).
https://doi.org/10.1029/93JD00198 
25. Winckler J. R., et al. New high-resolution ground-based studies of sprites. J. Geophys. Res., 101, 6997 (1996).
https://doi.org/10.1029/95JD03443