Electron excess and electromagnetic induction effect of extensive air showers

1Kartashev, VM, 1Kizim, PS, 1Kovtun, VE, 1Stervoiedov, SN, 1Shmatko, ES
1V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2010, 16 ;(3):03-14
https://doi.org/10.15407/knit2010.03.003
Publication Language: Russian
Abstract: 
A differential and integral relative electron excess spectra of an extensive air shower are calculated. Using the mathematical simulation, the magnetic induction from this electron excess and electromagnetic induction output pulses on the contacts of the magnetic sensor with defined parameters are calculated. It is shown that output pulses have a little sensitivity to the soft part (≤ 4 МeV) of the energy excess electron spectra. This opens up possibilities for the development of an alternative method for the extensive air shower detection where the role of the amount fluctuation of low energy particles is very small. All the necessary results for the planning of a research experiment are obtained.
Keywords: air showers, electrons, spectra
References: 
1. Askar'yan G. A. Excess Negative Charge of an Electron-Photon Shower and its Coherent Radio Emission. JETP, 41, No. 2(8), 616— 618 (1961) [in Russian].
2. Akhiezer A. I., Berestetsky V. B. Quantum Electrodynamics, 624 p. (Nauka, Moscow, 1969) [in Russian].
3. Belen’kii S. Z. Avalanche Processes in Cosmic Rays, 244 p. (GITTL, Moscow, Leningrad, 1948) [in Russian].
4. Greisen K. The extensive air showers. In: Cosmic Ray Physics, Ed.by J. G. Wilson, Vol. 3, 7—141 (Izd-vo inostr. lit., Moscow, 1958) [in Russian].
5. Dyakonov M. N., Egorov T. A., Efimov N. N., et al. Cosmic Rays of Extremely High Energy, 251 p. (Nauka, Novosibirsk, 1991) [in Russian].
6. Zalyubovsky I. I., Kartashev V. M., Kovtun V. E., et al. Magnetoinductive Effect of Electron-Photon Showers Developing in Large Thickness Ice. Radio Physics and Radio Astronomy, 7 (3), 254—264 (2002) [in Russian].
7. Zatsepin V. I., Chudakov A. E. Spatial distribution of intensity of Cerenkov light from wide atmospheric showers. Zh. Eksp. Teor. Fiz., 42, 1622—1628 (1962) [in Russian].
8. Kartashev V. M., Kovtun V. E., Shmatko E. S. Magnetoinductive Method for Detection of Extensive Air Showers of Ultimate High Energies. Radio Physics and Radio Astronomy, 4 (1), 61—68 (1999) [in Russian].
9. Landau L. D. The angular distribution of the shower particles. Zh. Eksp. Teor. Fiz., 10, 1007 (1940) [in Russian].
10. Landau L. D., Lifshitz E. M. Field Theory, 510 p. (Nauka, Moscow, 1988) [in Russian].
11. Sakharova T. M. Calculation of the frequency characteristics of the working attenuation of electrical filters, 327 p. (Svjaz', Moscow, 1968) [in Russian].
12. Khristiansen G. B., Kulikov G. V., Fomin Iu. A. Ultrahigh-energy cosmic radiation, 256 p. (Atomizdat, Moscow, 1975) [in Russian].
13. Shmatko E. S., Molotko S. P., Kartashev V. M., et al. Induction effect of extensive air showers. Problemy Iadernoi Fiziki i Kosmicheskikh Luchei, No. 30, 3—11 (1988) [in Russian].
14. Kartashev V. M., Kovtun V. E., Minko O. K., et al. Possibility to detect cosmic particles and neutrino of super-high energies in atmospheric air and condensed media using magnetoinductive method. The Journal of Kharkiv National University. Ser. Nuclei, Particles, Fields, Is. 2 (24), 23—34 (2004) [in Russian].
15. Linsley J. Primary cosmic rays of energy 1017 to 1020 eV, the energy spectrum and arrival directions. Proc. 8th Int. Cosmic Rays Conf. Jaipur, Vol. 4, 77—99 (1963).
16. Ruthroff C. L. Some broad-band transformers. Proc. IRE, 47, 1337—1342 (1959).
https://doi.org/10.1109/JRPROC.1959.287200

17. Tamm I., Belenky S. On the soft component of cosmic rays at sea level. J. Phys. USSR, 1, 177—198 (1939).